added fixelag smoothing

This commit is contained in:
toni
2016-03-22 18:01:18 +01:00
parent ee0c778728
commit 94fb34e6f9
7 changed files with 632 additions and 8 deletions

View File

@@ -0,0 +1,125 @@
#ifndef MYSMOOTHINGTRANSITIONSIMPLE_H
#define MYSMOOTHINGTRANSITIONSIMPLE_H
#include <KLib/math/filter/particles/ParticleFilterTransition.h>
#include <KLib/math/filter/smoothing/BackwardFilterTransition.h>
#include <KLib/math/distribution/Normal.h>
#include <KLib/math/distribution/Uniform.h>
#include <Indoor/geo/Angle.h>
#include "../MyState.h"
#include "../MyControl.h"
#include "../../Helper.h"
#include "../../toni/barometric.h"
class MySmoothingTransitionSimple : public K::BackwardFilterTransition<MyState> {
private:
/** a simple normal distribution */
K::NormalDistribution distWalk;
public:
/**
* ctor
* @param choice the choice to use for randomly drawing nodes
* @param fp the underlying floorplan
*/
MySmoothingTransitionSimple() :
distWalk(smoothing_walk_mu, smoothing_walk_sigma) {
distWalk.setSeed(4321);
}
public:
uint64_t ts = 0;
uint64_t deltaMS = 0;
/** set the current time in millisconds */
void setCurrentTime(const uint64_t ts) {
if (this->ts == 0) {
this->ts = ts;
deltaMS = 0;
} else {
deltaMS = this->ts - ts;
this->ts = ts;
}
}
/**
* smoothing transition starting at T with t, t-1,...0
* @param particles_new p_t (Forward Filter)
* @param particles_old p_t+1 (Smoothed Particles from Step before)
*/
std::vector<std::vector<double>> transition(std::vector<K::Particle<MyState>>const& particles_new,
std::vector<K::Particle<MyState>>const& particles_old ) override {
// calculate alpha(m,n) = p(q_t+1(m) | q_t(n))
// this means, predict all possible states q_t+1 with all passible states q_t
// e.g. p(q_490(1)|q_489(1));p(q_490(1)|q_489(2)) ... p(q_490(1)|q_489(N)) and
// p(q_490(1)|q_489(1)); p(q_490(2)|q_489(1)) ... p(q_490(M)|q_489(1))
std::vector<std::vector<double>> predictionProbabilities;
auto p1 = particles_old.begin(); //smoothed / backward filter p_t+1
auto p2 = particles_new.begin(); //forward filter p_t
#pragma omp parallel for private(p2) shared(predictionProbabilities)
for (p1 = particles_old.begin(); p1 < particles_old.end(); ++p1) {
std::vector<double> innerVector;
for(p2 = particles_new.begin(); p2 < particles_new.end(); ++p2){
//!!!distance kann hier zu groß werden!!!
const double distance_m = p2->state.pCur.getDistance(p1->state.pCur) / 100.0;
//get distance walked and getProb using the walking model
//double distDijkstra_m = ((GRID_DISTANCE_CM / 100.0) * (8 - 1));
const double distProb = distWalk.getProbability(distance_m);
//getProb using the angle(heading) between src and dst
double angle = 0.0;
if(!(p2->state.pCur.x == p1->state.pCur.x) && !(p2->state.pCur.y == p1->state.pCur.y)){
angle = Angle::getDEG_360(p2->state.pCur.x, p2->state.pCur.y, p1->state.pCur.x, p1->state.pCur.y);
}
const double headingProb = K::NormalDistribution::getProbability(p1->state.cumulativeHeading, smoothing_heading_sigma, angle);
//assert(headingProb != 0.0);
//assert(distProb != 0.0);
//check how near we are to the measurement
double floorProb = K::NormalDistribution::getProbability(p1->state.measurement_pressure, smoothing_baro_sigma, p2->state.hPa);
//combine the probabilities
double prob = distProb * headingProb * floorProb;
innerVector.push_back(prob);
if(distance_m != distance_m) {throw "detected NaN";}
if(distProb != distProb) {throw "detected NaN";}
if(angle != angle) {throw "detected NaN";}
if(headingProb != headingProb) {throw "detected NaN";}
if(floorProb != floorProb) {throw "detected NaN";}
if(floorProb == 0) {throw "detected NaN";}
if(prob != prob) {throw "detected NaN";}
//assert(prob != 0.0);
}
#pragma omp critical
predictionProbabilities.push_back(innerVector);
}
return predictionProbabilities;
}
};
#endif // MYTRANSITION_H