added section recursive state estimation, and 3/4 of related work
This commit is contained in:
@@ -18,16 +18,20 @@ On the other hand, fixed-interval smoothing requires all observations until time
|
|||||||
The origin of MC smoothing can be traced back to Genshiro Kitagawa.
|
The origin of MC smoothing can be traced back to Genshiro Kitagawa.
|
||||||
In his work \cite{kitagawa1996monte} he presented the simplest form of smoothing as an extension to the particle filter.
|
In his work \cite{kitagawa1996monte} he presented the simplest form of smoothing as an extension to the particle filter.
|
||||||
This algorithm is often called the filter-smoother since it runs online and a smoothing is provided while filtering.
|
This algorithm is often called the filter-smoother since it runs online and a smoothing is provided while filtering.
|
||||||
This approach can produce an accurate approximation of the filtering posterior $p(\vec{q}_{t} \mid \vec{o}_{1:t})$ with computational complexity of only $\mathcal{O}(N)$.
|
This approach uses the particle filter steps to update weighted paths $\{(\vec{q}_{1:t}^i , w^i_t)\}^N_{i=1}$, producing an accurate approximation of the filtering posterior $p(\vec{q}_{t} \mid \vec{o}_{1:t})$ with a computational complexity of only $\mathcal{O}(N)$.
|
||||||
\commentByFrank{kleines n?}
|
However, it gives a poor representation of previous states due a monotonic decrease of distinct particles caused by resampling of each weighted path \cite{Doucet11:ATO}.
|
||||||
However, it gives a poor representation of previous states \cite{Doucet11:ATO}.
|
|
||||||
\commentByFrank{wenn noch platz, einen satz mehr dazu warum es schlecht ist?}
|
|
||||||
Based on this, more advanced methods like the forward-backward smoother \cite{doucet2000} and backward simulation \cite{Godsill04:MCS} were developed.
|
Based on this, more advanced methods like the forward-backward smoother \cite{doucet2000} and backward simulation \cite{Godsill04:MCS} were developed.
|
||||||
Both methods are running backwards in time to reweight a set of particles recursively by using future observations.
|
Both methods are running backwards in time to reweight a set of particles recursively by using future observations.
|
||||||
Algorithmic details will be shown in section \ref{sec:smoothing}.
|
Algorithmic details will be shown in section \ref{sec:smoothing}.
|
||||||
|
|
||||||
%wo werden diese eingesetzt, paar beispiele. offline, online
|
%wo werden diese eingesetzt, paar beispiele. offline, online
|
||||||
In recent years, smoothing gets attention mainly in the field of computer vision and ... Here, ...
|
In recent years, smoothing gets attention mainly in other areas as indoor localisation.
|
||||||
|
The early work of \cite{isard1998smoothing} demonstrates the possibilities of smoothing for visual tracking.
|
||||||
|
They used a combination of the CONDENSATION particle filter with a forward-backward smoother.
|
||||||
|
Based on this pioneering approach, many different solutions for visual and multi-target tracking have been developed \cite{Perez2004}.
|
||||||
|
For example, in \cite{Platzer:2008} a particle smoother is used to reduce multimodalities in a blood flow simulation for human vessels. Or \cite{}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Nevertheless, their are some promising approach for indoor localisation systems as well. For example ...
|
Nevertheless, their are some promising approach for indoor localisation systems as well. For example ...
|
||||||
|
|
||||||
|
|||||||
@@ -1,11 +1,8 @@
|
|||||||
\section{Recursive State Estimation}
|
\section{Recursive State Estimation}
|
||||||
|
|
||||||
\commentByFrank{schon mal kopiert, dass es da ist.}
|
As mentioned before, most smoothing methods require a preceding filtering.
|
||||||
\commentByFrank{die neue activity in die observation eingebaut}
|
In our previous work \cite{Ebner-16}, we consider indoor localisation as a time-sequential, non-linear and non-Gaussian state estimation problem.
|
||||||
\commentByFrank{magst du hier auch gleich smoothing ansprechen? denke es würde sinn machen weils ja zum kompletten systemablauf gehört und den hatten wir hier ja immer drin. oder was meinst du?}
|
Therefore, a Bayes filter that satisfies the Markov property is used to calculate the posterior, which is given by
|
||||||
|
|
||||||
We consider indoor localisation as a time-sequential, non-linear and non-Gaussian state estimation problem.
|
|
||||||
Using a recursive Bayes filter that satisfies the Markov property, the posterior distribution at time $t$ can be written as
|
|
||||||
%
|
%
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\arraycolsep=1.2pt
|
\arraycolsep=1.2pt
|
||||||
@@ -13,40 +10,33 @@
|
|||||||
&p(\mStateVec_{t} \mid \mObsVec_{1:t}) \propto\\
|
&p(\mStateVec_{t} \mid \mObsVec_{1:t}) \propto\\
|
||||||
&\underbrace{p(\mObsVec_{t} \mid \mStateVec_{t})}_{\text{evaluation}}
|
&\underbrace{p(\mObsVec_{t} \mid \mStateVec_{t})}_{\text{evaluation}}
|
||||||
\int \underbrace{p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})}_{\text{transition}}
|
\int \underbrace{p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})}_{\text{transition}}
|
||||||
\underbrace{p(\mStateVec_{t-1} \mid \mObsVec_{1:t-1})d\vec{q}_{t-1}}_{\text{recursion}} \enspace,
|
\underbrace{p(\mStateVec_{t-1} \mid \mObsVec_{1:t-1})d\vec{q}_{t-1}}_{\text{recursion}} \enspace.
|
||||||
\end{array}
|
\end{array}
|
||||||
\label{equ:bayesInt}
|
\label{equ:bayesInt}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
%
|
%
|
||||||
where $\mObsVec_{1:t} = \mObsVec_{1}, \mObsVec_{1}, ..., \mObsVec_{t}$ is a series of observations up to time $t$.
|
Here, the previous observation $\mObsVec_{t-1}$ is included into the state transition \cite{Koeping14-PSA}.
|
||||||
The hidden state $\mStateVec$ is given by
|
For approximating eq. \eqref{equ:bayesInt} by means of MC methods, the transition is used as proposal distribution, also known as CONDENSATION algorithm \cite{isard1998smoothing}.
|
||||||
|
|
||||||
|
In context of indoor localisation, the hidden state $\mStateVec$ is defined as follows:
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\mStateVec = (x, y, z, \mStateHeading, \mStatePressure),\enskip
|
\mStateVec = (x, y, z, \mStateHeading, \mStatePressure),\enskip
|
||||||
x, y, z, \mStateHeading, \mStatePressure \in \R \enspace,
|
x, y, z, \mStateHeading, \mStatePressure \in \R \enspace,
|
||||||
\end{equation}
|
\end{equation}
|
||||||
%
|
%
|
||||||
where $x, y, z$ represent the position in 3D space, $\mStateHeading$ the user's heading and $\mStatePressure$ the
|
where $x, y, z$ represent the position in 3D space, $\mStateHeading$ the user's heading and $\mStatePressure$ the relative atmospheric pressure prediction in hectopascal (hPa). Further, the observation is given by
|
||||||
relative atmospheric pressure prediction in hectopascal (hPa).
|
|
||||||
\commentByFrank{hier einfach kuerzen und aufs fusion paper verweisen? auch wenn das noch ned durch ist?}
|
|
||||||
The recursive part of the density estimation contains all information up to time $t-1$.
|
|
||||||
Furthermore, the state transition $p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})$ models the pedestrian's movement as described in section \ref{sec:trans}.
|
|
||||||
%It should be noted, that we also include the current observation $\mObsVec_{t}$ in it.
|
|
||||||
As proven in \cite{Koeping14-PSA}, we may include the observation $\mObsVec_{t-1}$ into the state transition.
|
|
||||||
|
|
||||||
Containing all relevant sensor measurements to evaluate the current state, the observation vector is defined as follows:
|
|
||||||
%
|
%
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\mObsVec = (\mRssiVec_\text{wifi}, \mRssiVec_\text{ib}, \mObsHeading, \mObsSteps, \mObsPressure, \mObsActivity) \enspace,
|
\mObsVec = (\mRssiVec_\text{wifi}, \mRssiVec_\text{ib}, \mObsHeading, \mObsSteps, \mObsPressure, x) \enspace,
|
||||||
\end{equation}
|
\end{equation}
|
||||||
%
|
%
|
||||||
where $\mRssiVec_\text{wifi}$ and $\mRssiVec_\text{ib}$ contain the measurements of all nearby \docAP{}s (\docAPshort{})
|
covering all relevant sensor measurements.
|
||||||
and \docIBeacon{}s, respectively. $\mObsHeading$ and $\mObsSteps$ describe the relative angular change and the number
|
Here, $\mRssiVec_\text{wifi}$ and $\mRssiVec_\text{ib}$ contain the measurements of all nearby \docAP{}s (\docAPshort{}) and \docIBeacon{}s, respectively.
|
||||||
of steps detected for the pedestrian. $\mObsPressure$ is the relative barometric pressure with respect to a fixed reference.
|
$\mObsHeading$ and $\mObsSteps$ describe the relative angular change and the number of steps detected for the pedestrian.
|
||||||
Finally, $\mObsActivity$ contains the activity, currently estimated for the pedestrian, which is one of: unknown, standing, walking or
|
$\mObsPressure$ is the relative barometric pressure with respect to a fixed reference.
|
||||||
walking stairs.
|
Finally, $x$ contains the activity, currently estimated for the pedestrian, which is one of: unknown, standing, walking or walking stairs.
|
||||||
%For further information on how to incorporate such highly different sensor types,
|
|
||||||
%one should refer to the process of probabilistic sensor fusion \cite{Khaleghi2013}.
|
The probability density of the state evaluation is given by
|
||||||
By assuming statistical independence of all sensors, the probability density of the state evaluation is given by
|
|
||||||
%
|
%
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
%\begin{split}
|
%\begin{split}
|
||||||
@@ -54,23 +44,16 @@
|
|||||||
p(\vec{o}_t \mid \vec{q}_t)_\text{baro}
|
p(\vec{o}_t \mid \vec{q}_t)_\text{baro}
|
||||||
\,p(\vec{o}_t \mid \vec{q}_t)_\text{ib}
|
\,p(\vec{o}_t \mid \vec{q}_t)_\text{ib}
|
||||||
\,p(\vec{o}_t \mid \vec{q}_t)_\text{wifi}
|
\,p(\vec{o}_t \mid \vec{q}_t)_\text{wifi}
|
||||||
\enspace.
|
\enspace
|
||||||
%\end{split}
|
%\end{split}
|
||||||
\label{eq:evalBayes}
|
\label{eq:evalBayes}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
%
|
%
|
||||||
Here, every single component refers to a probabilistic sensor model.
|
and therefore similar to \cite{Ebner-16}.
|
||||||
The barometer information is evaluated using $p(\vec{o}_t \mid \vec{q}_t)_\text{baro}$,
|
Here, we assume a statistical independence of all sensors and every single component refers to a probabilistic sensor model.
|
||||||
whereby absolute position information is given by $p(\vec{o}_t \mid \vec{q}_t)_\text{ib}$ for
|
The barometer information is evaluated using $p(\vec{o}_t \mid \vec{q}_t)_\text{baro}$, whereby absolute position information is given by $p(\vec{o}_t \mid \vec{q}_t)_\text{ib}$ for \docIBeacon{}s and by $p(\vec{o}_t \mid \vec{q}_t)_\text{wifi}$ for \docWIFI{}.
|
||||||
\docIBeacon{}s and by $p(\vec{o}_t \mid \vec{q}_t)_\text{wifi}$ for \docWIFI{}.
|
|
||||||
|
|
||||||
%It is well known that finding analytic solutions for densities is very difficult and only possible in rare cases.
|
|
||||||
%Therefore, numerical solutions like Gaussian filters or the broad class of Monte Carlo methods are deployed \cite{sarkka2013bayesian}.
|
|
||||||
Since we assume indoor localisation to be a time-sequential, non-linear and non-Gaussian process,
|
|
||||||
a particle filter is chosen as approximation of the posterior distribution.
|
|
||||||
\commentByFrank{smoothing?}
|
|
||||||
%Within this work the state transition $p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})$ is used as proposal distribution,
|
|
||||||
%also known as CONDENSATION algorithm \cite{Isard98:CCD}.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -975,16 +975,6 @@ ISSN={0162-8828},}
|
|||||||
year={2006},
|
year={2006},
|
||||||
}
|
}
|
||||||
|
|
||||||
@misc{VAP2,
|
|
||||||
title={IEEE P802.11 Wireless LANs - Virtual Access Points},
|
|
||||||
author={Aboba, Bernard},
|
|
||||||
year={2003},
|
|
||||||
REMurl={http://aboba.drizzlehosting.com/IEEE/11-03-154r1-I-Virtual-Access-Points.doc},
|
|
||||||
note={\url{http://aboba.drizzlehosting.com/IEEE/11-03-154r1-I-Virtual-Access-Points.doc}},
|
|
||||||
note={zuletzt abgerufen am 28.11.2013},
|
|
||||||
pages={13},
|
|
||||||
}
|
|
||||||
|
|
||||||
% reference points to reset errors, automatic floorplan generation, backend-phase
|
% reference points to reset errors, automatic floorplan generation, backend-phase
|
||||||
@inproceedings{crowdinside,
|
@inproceedings{crowdinside,
|
||||||
author = {Alzantot, Moustafa and Youssef, Moustafa},
|
author = {Alzantot, Moustafa and Youssef, Moustafa},
|
||||||
@@ -2082,16 +2072,15 @@ year = {2014}
|
|||||||
@incollection{Platzer:2008,
|
@incollection{Platzer:2008,
|
||||||
year={2008},
|
year={2008},
|
||||||
isbn={978-3-540-78639-9},
|
isbn={978-3-540-78639-9},
|
||||||
booktitle={Bildverarbeitung für die Medizin 2008},
|
booktitle={Bildverarbeitung f\"ur die Medizin 2008},
|
||||||
series={Informatik Aktuell},
|
series={Informatik Aktuell},
|
||||||
editor={Tolxdorff, Thomas and Braun, Jürgen and Deserno, ThomasM. and Horsch, Alexander and Handels, Heinz and Meinzer, Hans-Peter},
|
editor={Tolxdorff, Thomas and Braun, J\"urgen and Deserno, Thomas M. and Horsch, Alexander and Handels, Heinz and Meinzer, Hans-Peter},
|
||||||
doi={10.1007/978-3-540-78640-5_58},
|
doi={10.1007/978-3-540-78640-5_58},
|
||||||
title={3D Blood Flow Reconstruction from 2D Angiograms},
|
title={{3D Blood Flow Reconstruction from 2D Angiograms}},
|
||||||
url={http://dx.doi.org/10.1007/978-3-540-78640-5_58},
|
|
||||||
publisher={Springer Berlin Heidelberg},
|
publisher={Springer Berlin Heidelberg},
|
||||||
author={Platzer, Esther-S. and Deinzer, Frank and Paulus, Dietrich and Denzler, Joachim},
|
author={Platzer, Esther-S. and Deinzer, Frank and Paulus, Dietrich and Denzler, Joachim},
|
||||||
pages={288-292},
|
pages={288--292},
|
||||||
language={English}
|
language={English},
|
||||||
}
|
}
|
||||||
|
|
||||||
@article{haugh2004monte,
|
@article{haugh2004monte,
|
||||||
@@ -2273,12 +2262,12 @@ IGNOREmonth={Apr},
|
|||||||
}
|
}
|
||||||
|
|
||||||
@incollection{isard1998smoothing,
|
@incollection{isard1998smoothing,
|
||||||
title={A Smoothing Filter for Condensation},
|
title={{A Smoothing Filter for Condensation}},
|
||||||
author={Isard, Michael and Blake, Andrew},
|
author={Isard, Michael and Blake, Andrew},
|
||||||
booktitle={Computer Vision—ECCV'98},
|
booktitle={Computer Vision—ECCV'98},
|
||||||
pages={767--781},
|
pages={767--781},
|
||||||
year={1998},
|
year={1998},
|
||||||
publisher={Springer}
|
publisher={Springer},
|
||||||
}
|
}
|
||||||
|
|
||||||
@inproceedings{klaas2006fast,
|
@inproceedings{klaas2006fast,
|
||||||
@@ -2717,5 +2706,21 @@ volume = {13},
|
|||||||
year = {1967}
|
year = {1967}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@article{Perez2004,
|
||||||
|
author = {P{\'{e}}rez, Patrick and Vermaak, Jaco and Blake, Andrew},
|
||||||
|
doi = {10.1109/JPROC.2003.823147},
|
||||||
|
isbn = {0018-9219},
|
||||||
|
issn = {00189219},
|
||||||
|
journal = {Proceedings of the IEEE},
|
||||||
|
keywords = {Color,Data fusion,Motion,Particle filters,Sound,Visual tracking},
|
||||||
|
IGNOREmonth = {mar},
|
||||||
|
number = {3},
|
||||||
|
pages = {495--513},
|
||||||
|
shorttitle = {Proceedings of the IEEE},
|
||||||
|
title = {{Data Fusion for Visual Tracking with Particles}},
|
||||||
|
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1271403},
|
||||||
|
volume = {92},
|
||||||
|
year = {2004}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user