Merge branch 'master' of https://git.frank-ebner.de/toni/IPIN2016
This commit is contained in:
@@ -1,6 +1,27 @@
|
|||||||
\subsection{Barometer}
|
\subsection{Barometer}
|
||||||
|
|
||||||
used if available
|
If available, the Smartphone's barometer is used to infer the likelyness of the current $z$-location%
|
||||||
relative positioning (z)
|
%
|
||||||
relative to the first few measurements
|
As ambient pressure readings are highly influenced by environmental conditions
|
||||||
also used to determine uncertainty
|
like the weather, time-of-day and others \cite{Muralidharan14-BPS},
|
||||||
|
we use relative pressure instead of absolute ones.%
|
||||||
|
%
|
||||||
|
Due to noisy sensors, more than one reading is used to estimate this relative base.
|
||||||
|
The usual setup time of a navigation-system (route calculation, etc.)
|
||||||
|
is used to average all barometer readings during this timeframe.
|
||||||
|
This average $\overline{\mObsPressure}$ serves as relative base.
|
||||||
|
Furthermore, we estimate the sensor's uncertainty $\sigma_\text{baro}$ for later use within the evaluation step.%
|
||||||
|
%
|
||||||
|
During each transition from $\mStateVec_{t-1}$ to $\mStateVec_t$, we need a corresponding, relative
|
||||||
|
pressure prediction $\mStatePressure$ which is adjusted whenever a $z$-change happens within the transition.
|
||||||
|
%
|
||||||
|
% \begin{equation}
|
||||||
|
% \mState_{t}^{\mStatePressure} = \mState_{t-1}^{\mStatePressure} + \Delta z \cdot b
|
||||||
|
% ,\enskip
|
||||||
|
% \Delta z = \mState_{t-1}^{z} - \mState_{t}^z
|
||||||
|
% ,\enskip
|
||||||
|
% b \in \R
|
||||||
|
% \enspace .
|
||||||
|
% \label{eq:baroTransition}
|
||||||
|
% \end{equation}
|
||||||
|
|
||||||
|
|||||||
33
competition/tex/chapters/components.tex
Normal file
33
competition/tex/chapters/components.tex
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
\section{Component Description}
|
||||||
|
|
||||||
|
Our indoor localisation solely uses the sensors provided by almost each commodity smartphone.
|
||||||
|
The readings of all those sensors are fused using recursive density estimation, directly on the phone:
|
||||||
|
|
||||||
|
\commentByFrank{state beschreiben: x, y, z, heading. oder machst du das schon weiter oben? dann kann vermutlicha uch die formel hier weg}
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\arraycolsep=1.2pt
|
||||||
|
\begin{array}{ll}
|
||||||
|
&p(\mStateVec_{t} \mid \mObsVec_{1:t}) \propto\\
|
||||||
|
&\underbrace{p(\mObsVec_{t} \mid \mStateVec_{t})}_{\text{evaluation}}
|
||||||
|
\int \underbrace{p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})}_{\text{transition}}
|
||||||
|
\underbrace{p(\mStateVec_{t-1} \mid \mObsVec_{1:t-1})d\vec{q}_{t-1}}_{\text{recursion}} \enspace,
|
||||||
|
\end{array}
|
||||||
|
\label{eq:recursiveDensity}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\docWIFI{} and (if available) \docIBeacon{}s serve as absolute positioning component. If the smartphone provides
|
||||||
|
a barometer, its measurements are used as an additional, relative verification for the current $z$-component
|
||||||
|
of the pedestrian's location.
|
||||||
|
|
||||||
|
The transition in \refeq{eq:recursiveDensity} is carried out using random walks on a graph, which is built offline, and uses
|
||||||
|
the building's floorplan. During the localisation process, the smartphone's IMU (accelerometer, gyroscope) is used to constrain the random walk
|
||||||
|
in both, distance and heading.
|
||||||
|
|
||||||
|
The recursive density estimation is implemented using a particle-filter.
|
||||||
|
|
||||||
|
\input{chapters/barometer.tex}
|
||||||
|
\input{chapters/wifi.tex}
|
||||||
|
\input{chapters/stepturn.tex}
|
||||||
|
\input{chapters/graph.tex}
|
||||||
|
|
||||||
@@ -1,7 +1,31 @@
|
|||||||
\subsection{Transition}
|
\subsection{Transition}
|
||||||
|
|
||||||
a graph based on the building's floorplan
|
To enhance the quality of the proposal distribution, the transition step is
|
||||||
uses prior knowledge (floorplan + desired destination [if known])
|
based on a \SI{20}{\centimeter}-gridded graph $G = (V,E)$
|
||||||
uses random-walks to perform the transition
|
with vertices $v_i \in V$ and undirected edges $e_{i,j} \in E$
|
||||||
uses imo (acc,gyro) for the random-walk (distance/direction)
|
derived from the buildings floorplan. This ensures that only valid
|
||||||
calculated offline
|
movements can be sampled from the previous state.%
|
||||||
|
|
||||||
|
\todo{wenn platz dann bild?}
|
||||||
|
|
||||||
|
The graph is built once and offline using the floorplan created by our editor.
|
||||||
|
Besides realistic stairwells, additional semantic information (e.g. doors)
|
||||||
|
can be included. Hereafter, the built graph is transmitted to the smartphone
|
||||||
|
and is used during the online phase.
|
||||||
|
|
||||||
|
If the pedestrian's destination is know beforehand, this information can
|
||||||
|
be included as prior knowledge into the transition step. A shortest-path
|
||||||
|
calculation imposes additional constraints to the transition by favouring
|
||||||
|
movements that approach the desired destination (pedestrian sticking to the shortest path)
|
||||||
|
over movements that depart from the destination.
|
||||||
|
|
||||||
|
To ensure that the calculated shortest path is realistic (resembled human walking paths)
|
||||||
|
each node within the graph contains a weight, denoting the likelyhood for being visited
|
||||||
|
by the pedestrian. Using this approach, nodes near to walls receive a lower likelyhood.
|
||||||
|
During the path-calculation this importance is used to artificially increase/decrease the
|
||||||
|
weight $\delta(\mEdgeAB)$ between two nodes. This ensures that the resulting path is
|
||||||
|
farther away from obstacles and looks much more realistic
|
||||||
|
|
||||||
|
\todo{wenn platz dann bild?}
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -19,7 +19,11 @@ This ensures sensor is defect or is not provided by the smartphone itself
|
|||||||
\item aus welchen arbeiten fuegt sich das system zusammen?
|
\item aus welchen arbeiten fuegt sich das system zusammen?
|
||||||
\item grober ueberblick ueber die einzelnen komponenten und sensoren
|
\item grober ueberblick ueber die einzelnen komponenten und sensoren
|
||||||
\item modulare uebersicht ueber das gesamte system. (denis bild + smoothing und prior)
|
\item modulare uebersicht ueber das gesamte system. (denis bild + smoothing und prior)
|
||||||
\item particle filter mit formeluebersicht und was fusioniert wird
|
\item particle filter mit formeluebersicht und was fusioniert wird
|
||||||
|
\begin{figure}[h!]
|
||||||
|
\centering%
|
||||||
|
\includegraphics[trim=99 0 0 0, clip, width=8.2cm]{editor1.png}%
|
||||||
|
\end{figure}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\cite{ebner-15}
|
\cite{ebner-15}
|
||||||
@@ -33,13 +37,9 @@ System setup is very easily and no fingerprinting is required.
|
|||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
\section{Component Description}
|
|
||||||
Zu jeder Componente eine kurze Beschreibung welche die Grundfunktionen und den Wert innerhalb des Systems deutlich hervorhebt. Details werden dann referenziert.
|
|
||||||
|
|
||||||
\input{chapters/barometer.tex}
|
\input{chapters/components.tex}
|
||||||
\input{chapters/wifi.tex}
|
|
||||||
\input{chapters/stepturn.tex}
|
|
||||||
\input{chapters/graph.tex}
|
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Fixed-lag smoother
|
\item Fixed-lag smoother
|
||||||
|
|||||||
@@ -1,7 +1,11 @@
|
|||||||
\subsection{Step- and Turn-Detection}
|
\subsection{Step- and Turn-Detection}
|
||||||
|
|
||||||
used for the transition step
|
The smartphone's IMU is used to track the number of steps the pedestrian has made
|
||||||
uses the smartphone's imu (acc, gyro)
|
(accelerometer) as well as the relative heading change (gyroscope) since the last transition
|
||||||
simple step detection using magnitudes
|
\cite{ebner-15}.%
|
||||||
simple turn detection by integrating over the gyro
|
%
|
||||||
feeds the transition
|
To avoid potential sample impoverishment, which is induced when using the state transition as proposal distribution,
|
||||||
|
we use both values directly within the transition step to constrain the to-be-walked distance and direction for the
|
||||||
|
random walk.
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -1,14 +1,18 @@
|
|||||||
\subsection{\docWIFI}
|
\subsection{\docWIFI}
|
||||||
|
|
||||||
absolute positioning using wifi (x,y,z)
|
the smartphone's \docWIFI{} component provides an absolute location estimation $(x,y,z)^T$ by
|
||||||
no fingerprinting
|
measuring the signal-strengths of nearby transmitters (\docAP{}) and comparing them with the signal-strengths
|
||||||
uses signal-strength prediction model
|
that should be measurable. The latter are determined using a signal-strength prediction model.
|
||||||
position of access points must be known beforehand
|
Thus, no fingerprinting is required. Solely the positions of the \docAP{}s must be known beforehand.%
|
||||||
only 2 parameters for all APs
|
%
|
||||||
only vague position estimation
|
Prediction uses the wall-attenuation-factor model \cite{ebner-15}
|
||||||
|
which needs just three parameters:
|
||||||
|
the senders transmission power, the attenuation based on the distance from the sender, and the attenuation by floors/ceilings.
|
||||||
|
To reduce the setup-time, the same values can be used for all transmitters at the expense of a worse location estimation / higher
|
||||||
|
uncertainties.
|
||||||
|
|
||||||
\subsection{\docIBeacon{}s}
|
\subsection{\docIBeacon{}s}
|
||||||
|
|
||||||
optional
|
If the building is equipped with \docIBeacon{}s, those may additionally be used as absolute location source.
|
||||||
same as wifi
|
Like \docWIFI{}, measurements are compared with a model prediction based on the known transmitter position.
|
||||||
but only one param: as txp is broadcasted
|
The transmission power of the \docIBeacon{} is transmitted by the beacon itself and does not need any estimation beforehand.
|
||||||
|
|||||||
BIN
competition/tex/gfx/editor1.png
Executable file
BIN
competition/tex/gfx/editor1.png
Executable file
Binary file not shown.
|
After Width: | Height: | Size: 77 KiB |
@@ -1,12 +1,11 @@
|
|||||||
PATH=$PATH:/mnt/data/texlive/bin/x86_64-linux/
|
PATH=$PATH:/mnt/data/texlive/bin/x86_64-linux/
|
||||||
|
|
||||||
latex bare_conf.tex
|
pdflatex bare_conf.tex
|
||||||
bibtex bare_conf
|
bibtex bare_conf
|
||||||
latex bare_conf.tex
|
pdflatex bare_conf.tex
|
||||||
latex bare_conf.tex
|
pdflatex bare_conf.tex
|
||||||
|
|
||||||
dvips bare_conf.dvi
|
#dvips bare_conf.dvi
|
||||||
|
#ps2pdf14 bare_conf.ps
|
||||||
ps2pdf14 bare_conf.ps
|
|
||||||
|
|
||||||
atril bare_conf.pdf&
|
atril bare_conf.pdf&
|
||||||
|
|||||||
Reference in New Issue
Block a user