From 1cb88c109b4942a71e86fdf17611fbb548389f85 Mon Sep 17 00:00:00 2001 From: kazu Date: Sun, 17 Apr 2016 16:46:40 +0200 Subject: [PATCH] copied contents from system.tex added some comments and the new activity class --- tex/chapters/system.tex | 72 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 72 insertions(+) diff --git a/tex/chapters/system.tex b/tex/chapters/system.tex index b36b995..9d0b113 100644 --- a/tex/chapters/system.tex +++ b/tex/chapters/system.tex @@ -1,5 +1,77 @@ \section{Recursive State Estimation} + \commentByFrank{schon mal kopiert, dass es da ist.} + \commentByFrank{die neue activity in die observation eingebaut} + \commentByFrank{magst du hier auch gleich smoothing ansprechen? denke es würde sinn machen weils ja zum kompletten systemablauf gehört und den hatten wir hier ja immer drin. oder was meinst du?} + + We consider indoor localisation as a time-sequential, non-linear and non-Gaussian state estimation problem. + Using a recursive Bayes filter that satisfies the Markov property, the posterior distribution at time $t$ can be written as + % + \begin{equation} + \arraycolsep=1.2pt + \begin{array}{ll} + &p(\mStateVec_{t} \mid \mObsVec_{1:t}) \propto\\ + &\underbrace{p(\mObsVec_{t} \mid \mStateVec_{t})}_{\text{evaluation}} + \int \underbrace{p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})}_{\text{transition}} + \underbrace{p(\mStateVec_{t-1} \mid \mObsVec_{1:t-1})d\vec{q}_{t-1}}_{\text{recursion}} \enspace, + \end{array} + \label{equ:bayesInt} + \end{equation} + % + where $\mObsVec_{1:t} = \mObsVec_{1}, \mObsVec_{1}, ..., \mObsVec_{t}$ is a series of observations up to time $t$. + The hidden state $\mStateVec$ is given by + \begin{equation} + \mStateVec = (x, y, z, \mStateHeading, \mStatePressure),\enskip + x, y, z, \mStateHeading, \mStatePressure \in \R \enspace, + \end{equation} + % + where $x, y, z$ represent the position in 3D space, $\mStateHeading$ the user's heading and $\mStatePressure$ the + relative atmospheric pressure prediction in hectopascal (hPa). + \commentByFrank{hier einfach kuerzen und aufs fusion paper verweisen? auch wenn das noch ned durch ist?} + The recursive part of the density estimation contains all information up to time $t-1$. + Furthermore, the state transition $p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})$ models the pedestrian's movement as described in section \ref{sec:trans}. + %It should be noted, that we also include the current observation $\mObsVec_{t}$ in it. + As proven in \cite{Koeping14-PSA}, we may include the observation $\mObsVec_{t-1}$ into the state transition. + + Containing all relevant sensor measurements to evaluate the current state, the observation vector is defined as follows: + % + \begin{equation} + \mObsVec = (\mRssiVec_\text{wifi}, \mRssiVec_\text{ib}, \mObsHeading, \mObsSteps, \mObsPressure, \mObsActivity) \enspace, + \end{equation} + % + where $\mRssiVec_\text{wifi}$ and $\mRssiVec_\text{ib}$ contain the measurements of all nearby \docAP{}s (\docAPshort{}) + and \docIBeacon{}s, respectively. $\mObsHeading$ and $\mObsSteps$ describe the relative angular change and the number + of steps detected for the pedestrian. $\mObsPressure$ is the relative barometric pressure with respect to a fixed reference. + Finally, $\mObsActivity$ contains the activity, currently estimated for the pedestrian, which is one of: unknown, standing, walking or + walking stairs. + %For further information on how to incorporate such highly different sensor types, + %one should refer to the process of probabilistic sensor fusion \cite{Khaleghi2013}. + By assuming statistical independence of all sensors, the probability density of the state evaluation is given by + % + \begin{equation} + %\begin{split} + p(\vec{o}_t \mid \vec{q}_t) = + p(\vec{o}_t \mid \vec{q}_t)_\text{baro} + \,p(\vec{o}_t \mid \vec{q}_t)_\text{ib} + \,p(\vec{o}_t \mid \vec{q}_t)_\text{wifi} + \enspace. + %\end{split} + \label{eq:evalBayes} + \end{equation} + % + Here, every single component refers to a probabilistic sensor model. + The barometer information is evaluated using $p(\vec{o}_t \mid \vec{q}_t)_\text{baro}$, + whereby absolute position information is given by $p(\vec{o}_t \mid \vec{q}_t)_\text{ib}$ for + \docIBeacon{}s and by $p(\vec{o}_t \mid \vec{q}_t)_\text{wifi}$ for \docWIFI{}. + + %It is well known that finding analytic solutions for densities is very difficult and only possible in rare cases. + %Therefore, numerical solutions like Gaussian filters or the broad class of Monte Carlo methods are deployed \cite{sarkka2013bayesian}. + Since we assume indoor localisation to be a time-sequential, non-linear and non-Gaussian process, + a particle filter is chosen as approximation of the posterior distribution. + \commentByFrank{smoothing?} + %Within this work the state transition $p(\mStateVec_{t} \mid \mStateVec_{t-1}, \mObsVec_{t-1})$ is used as proposal distribution, + %also known as CONDENSATION algorithm \cite{Isard98:CCD}. +