fixed comments
This commit is contained in:
@@ -1,7 +1,4 @@
|
||||
%\section{Filtering}
|
||||
|
||||
\commentByFrank{eval und transition tauschen von der reihenfolge?}
|
||||
|
||||
\subsection{Evaluation}
|
||||
\label{sec:eval}
|
||||
|
||||
@@ -89,7 +86,7 @@
|
||||
directly within the transition step provides a more robust posterior distribution. Adding them to the evaluation
|
||||
instead, would lead to sample impoverishment due to the used Monte Carlo methods \cite{Isard98:CCD}.
|
||||
|
||||
\commentByFrank{ist das verstaendlich oder schon zu kurz?}
|
||||
%\commentByFrank{ist das verstaendlich oder schon zu kurz?}
|
||||
|
||||
%\subsubsection{Pedestrian's Destination}
|
||||
We assume the pedestrian's desired destination to be known beforehand. This prior knowledge is incorporated
|
||||
@@ -138,21 +135,30 @@
|
||||
%\subsubsection{Activity-Detection}
|
||||
Additionally we perform a simple activity detection for the pedestrian, able to distinguish between several actions
|
||||
$\mObsActivity \in \{ \text{unknown}, \text{standing}, \text{walking}, \text{stairs\_up}, \text{stairs\_down} \}$.
|
||||
Likewise, this knowledge is evaluated when walking the grid: Edges $\mEdgeAB$ matching the currently detected
|
||||
activity are favoured using $p(\mEdgeAB)_\text{act} = 0.8$ and $0.2$ otherwise:
|
||||
%
|
||||
%\commentByFrank{bei mir ueberlappt aktuell nix, muessten mal testen was besser ist. beim ueberlappen ist das delay halt kuerzer. denke das schon ok.}
|
||||
%
|
||||
For this, the sensor signals are split in sliding windows. Each window has a length of one second and overlaps 500 ms with its prior window.
|
||||
We use a naive Bayes classifier with two features. The first one is the variance of the accelerometer's magnitude within a window.
|
||||
The second feature is the difference between the last and first barometer measurement of the particular window.
|
||||
Based on these features the classifier assigns an activity to each of the sliding windows.
|
||||
%
|
||||
Similarly to the above, this knowledge is then evaluated when walking the grid: Edges $\mEdgeAB$ matching the currently detected
|
||||
activity are favoured using $p(\mEdgeAB)_\text{act} = 0.8$ and $0.2$ otherwise.
|
||||
If no information of the current activitiy could be obtained, no influence is exerted on the edges.
|
||||
|
||||
\begin{equation}
|
||||
p(\mEdgeAB)_\text{act} =
|
||||
\footnotesize{
|
||||
\begin{cases}
|
||||
1.0 & \mObsActivity = \text{unknown} \\
|
||||
0.8 & \mObsActivity = \text{stairs\_up} \land \fPos{\mVertexB}_z > \fPos{\mVertexA}_z \\
|
||||
0.2 & \mObsActivity = \text{stairs\_up} \land \fPos{\mVertexB}_z \le \fPos{\mVertexA}_z \\
|
||||
\cdots
|
||||
\end{cases}
|
||||
}\enskip .
|
||||
\end{equation}
|
||||
\commentByFrank{das switch ist wahrscheinlich unnoetig und der text reicht}
|
||||
% \begin{equation}
|
||||
% p(\mEdgeAB)_\text{act} =
|
||||
% \footnotesize{
|
||||
% \begin{cases}
|
||||
% 1.0 & \mObsActivity = \text{unknown} \\
|
||||
% 0.8 & \mObsActivity = \text{stairs\_up} \land \fPos{\mVertexB}_z > \fPos{\mVertexA}_z \\
|
||||
% 0.2 & \mObsActivity = \text{stairs\_up} \land \fPos{\mVertexB}_z \le \fPos{\mVertexA}_z \\
|
||||
% \cdots
|
||||
% \end{cases}
|
||||
% }\enskip .
|
||||
% \end{equation}
|
||||
% \commentByFrank{das switch ist wahrscheinlich unnoetig und der text reicht}
|
||||
|
||||
|
||||
% Activity Recognition
|
||||
@@ -161,17 +167,11 @@
|
||||
% Zeitintervall für das die Merkmale berechnet werden
|
||||
|
||||
|
||||
\commentByFrank{weg mit diesem absatz? das hatte ich ja schon beschrieben}
|
||||
The transition model includes a simple recognizer of different locomotion modes like normal walking or ascending/descending stairs. The reasoning behind this is to favour paths that correspond with the detected locomotion mode.
|
||||
% \commentByFrank{weg mit diesem absatz? das hatte ich ja schon beschrieben}
|
||||
% The transition model includes a simple recognizer of different locomotion modes like normal walking or ascending/descending stairs. The reasoning behind this is to favour paths that correspond with the detected locomotion mode.
|
||||
|
||||
|
||||
\commentByFrank{bei mir ueberlappt aktuell nix, muessten mal testen was besser ist. beim ueberlappen ist das delay halt kuerzer. denke das schon ok.}
|
||||
\commentByFrank{satzreihenfolge war komisch -> angepasst}
|
||||
For this, the sensor signals are split in sliding windows. Each window has a length of one second and overlaps 500 ms with its prior window.
|
||||
\commentByFrank{navies: naive?}
|
||||
We use a Naives Bayes classifier with two features. The first one is the variance of the accelerometer's magnitude within a window.
|
||||
The second feature is the difference between the last and first barometer measurement of the particular window.
|
||||
Based on these features the classifier assigns an activity to each of the sliding windows.
|
||||
|
||||
%\todo{Was passiert wenn ein überlappendes Fenster zwei verschiedene Aktivitäten zugewiesen bekommt? Sliding windows evtl. weglassen?}
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user