Files
Dirigent/matlab/AutoCorrMethodNew_Watch.m
toni 49042a0cfb added ground truth to java method
fixed some bugs
improved algo and results
2019-01-27 10:47:46 +01:00

398 lines
16 KiB
Matlab

%using autocorrelation to estimate the current bmp within some fixed window
%load sensor files
%files = dir(fullfile('../../measurements/2017.06/mSensor/', '*.csv'));
%files = natsortfiles(dir(fullfile('../../measurements/2017.06/lgWear/', '*.csv')));
%files = dir(fullfile('../../measurements/wearR/', '*.csv'));
%files = dir(fullfile('../../measurements/peter_failed/', '*.csv'));
%files = dir(fullfile('../../measurements/2018.06/manfred/LGWatchR/', '*.csv'));
%files = dir(fullfile('../../measurements/2018.06/peter/Huawai/', '*.csv'));
%files = dir(fullfile('../../measurements/2018.06/peter/mSensor/', '*.csv'));
files = dir(fullfile('../../measurements/2018.06/frank/mSensorTest/', '*.csv'));
%files = dir(fullfile('../../measurements/2018.06/leon/mSensor/', '*.csv'));
%files_sorted = natsortfiles({files.name});
for file = files'
filename = [file.folder '/' file.name];
measurements = dlmread(filename, ';', 3, 0);
%load ground truth file
fid = fopen(filename);
fgetl(fid);
Str = fgetl(fid);
Key = 'Metronom: ';
Index = strfind(Str, Key);
gtDataRaw = sscanf(Str(Index(1) + length(Key):end), '%g', 1);
gtData = [];
gtFile = [];
if(isempty(gtDataRaw))
gtFile = extractAfter(Str, Key);
gtFile = strcat('../../measurements/2018.06/gt_toni/', gtFile);
f = fopen(gtFile);
gtDataRaw = textscan(f, '%f %s', 'Delimiter', ' ');
fclose(f);
[~,~,~,hours,minutes,seconds] = datevec(gtDataRaw{2}, 'HH:MM:SS.FFF');
gtData(:,1) = 1000*(60*minutes + seconds); %we do not use hours!
gtData(:,2) = gtDataRaw{1};
else
gtData = gtDataRaw;
end
%draw the raw acc data
m_idx = [];
m_idx = (measurements(:,2)==3); %Android App: 10, Sensor: 3, Normal Data: 2
m = measurements(m_idx, :);
%Interpolate to generate a constant sample rate to 250hz (4ms per sample)
sample_rate_ms = 4;%ms
[~, m_unique_idx] = unique(m(:,1)); %matlab requirs unique timestamps for interp
m = m(m_unique_idx, :);
t = m(:,1); %timestamps
t_interp = t(1):sample_rate_ms:t(length(t));
m_interp = interp1(t,m(:,3:5),t_interp);
%put all together again
m = [t_interp', t_interp', m_interp];
% figure(1);
% plot(m(:,1),m(:,3)) %x
% legend("x", "location", "eastoutside");
%
% figure(2);
% plot(m(:,1),m(:,4)) %yt
% legend("y", "location", "eastoutside");
%
% figure(3);
% plot(m(:,1),m(:,5)) %z
% legend("z", "location", "eastoutside");
%
% %magnitude
magnitude = sqrt(sum(m(:,3:5).^2,2));
% figure(5);
% plot(m(:,1), magnitude);
% legend("magnitude", "location", "eastoutside");
%waitforbuttonpress();
%save timestamps
timestamps = m(:,1);
data = m(:,3); %only z
%TODO: Different window sizes for periods under 16.3 s
window_size = 1024; %about 2 seconds using 2000hz, 16.3 s using 250hz
overlap = 256;
bpm_per_window_ms = [];
bpm_per_window = [];
bpm_3D = [];
ms_3D = [];
gtIdx = 1;
gtError_3D = [];
gtError_1D = [];
for i = window_size+1:1:length(data)
%wait until window is filled with new data
if(mod(i,overlap) == 0)
%set cur ground truth
if(length(gtData) > 1)
curTimestamp = timestamps(i) - timestamps(1);
while(curTimestamp > gtData(gtIdx,1) && gtIdx < length(gtData))
curGtBpm = gtData(gtIdx,2);
gtIdx = gtIdx + 1;
end
else
curGtBpm = gtData;
end
%measure periodicity of window and use axis with best periodicity
[corr_x, lag_x] = xcov(m(i-window_size:i,3), (window_size/2), "coeff");
[corr_y, lag_y] = xcov(m(i-window_size:i,4), (window_size/2), "coeff");
[corr_z, lag_z] = xcov(m(i-window_size:i,5), (window_size/2), "coeff");
%magnitude
[corr_mag, lag_mag] = xcov(magnitude(i-window_size:i), (window_size/2), "coeff");
%TODO: stichwort spatial autocorrelation
%figure(77);
%scatter3(timestamps(i-window_size:i), m(i-window_size:i,4), m(i-window_size:i,5));
%distanz zwischen den vektoren nehmen und in eine normale autocorrelation zu packen
%aufpassen wegen der norm, dass die richtung quasi nicht verloren geht.
%https://en.wikipedia.org/wiki/Lp_space
[corr_3D, lag_3D] = distCorr(m(i-window_size:i, 3:5), (window_size/2));
corr_x_pos = corr_x;
corr_y_pos = corr_y;
corr_z_pos = corr_z;
corr_mag_pos = corr_mag;
corr_x_pos(corr_x_pos<0)=0;
corr_y_pos(corr_y_pos<0)=0;
corr_z_pos(corr_z_pos<0)=0;
corr_mag_pos(corr_mag_pos<0)=0;
[peak_x, idx_x_raw] = findpeaks(corr_x_pos, 'MinPeakHeight', 0.1,'MinPeakDistance', 50, 'MinPeakProminence', 0.1);
[peak_y, idx_y_raw] = findpeaks(corr_y_pos, 'MinPeakHeight', 0.1,'MinPeakDistance', 50, 'MinPeakProminence', 0.1);
[peak_z, idx_z_raw] = findpeaks(corr_z_pos, 'MinPeakHeight', 0.1,'MinPeakDistance', 50, 'MinPeakProminence', 0.1);
[peak_mag, idx_mag_raw] = findpeaks(corr_mag_pos, 'MinPeakHeight', 0.1,'MinPeakDistance', 50, 'MinPeakProminence', 0.1);
[peak_3D, idx_3D_raw] = findpeaks(corr_3D, 'MinPeakHeight', 0.1,'MinPeakDistance', 50, 'MinPeakProminence', 0.1);
idx_x_raw = sort(idx_x_raw);
idx_y_raw = sort(idx_y_raw);
idx_z_raw = sort(idx_z_raw);
idx_mag_raw = sort(idx_mag_raw);
idx_3D_raw = sort(idx_3D_raw);
idx_x = findFalseDetectedPeaks(idx_x_raw, lag_x, corr_x);
idx_y = findFalseDetectedPeaks(idx_y_raw, lag_y, corr_y);
idx_z = findFalseDetectedPeaks(idx_z_raw, lag_z, corr_z);
idx_mag = findFalseDetectedPeaks(idx_mag_raw, lag_mag, corr_mag);
%idx_3D = findFalseDetectedPeaks(idx_3D_raw, lag_3D', corr_3D);
idx_3D = idx_3D_raw;
Dwindow = m(i-window_size:i,3);
Dwindow_mean_ts_diff = mean(diff(lag_3D(idx_3D) * sample_rate_ms)); %2.5 ms is the time between two samples at 400hz
Dwindow_mean_bpm = (60000 / (Dwindow_mean_ts_diff));
% figure(10);
% plot(lag_3D, corr_3D, lag_3D(idx_3D), corr_3D(idx_3D), 'r*', lag_3D(idx_3D_raw), corr_3D(idx_3D_raw), 'g*')
% hold ("on")
% m_label_ms = strcat(" mean ms: ", num2str(Dwindow_mean_ts_diff));
% m_label_bpm = strcat(" mean bpm: ", num2str(Dwindow_mean_bpm));
% title(strcat(" ", m_label_ms, " ", m_label_bpm));
% hold ("off");
Xwindow = m(i-window_size:i,3);
Xwindow_mean_ts_diff = mean(diff(lag_x(idx_x) * sample_rate_ms)); %2.5 ms is the time between two samples at 400hz
Xwindow_mean_bpm = (60000 / (Xwindow_mean_ts_diff));
% figure(11);
% plot(lag_x, corr_x, lag_x(idx_x), corr_x(idx_x), 'r*', lag_x(idx_x_raw), corr_x(idx_x_raw), 'g*') %z
% hold ("on")
% m_label_ms = strcat(" mean ms: ", num2str(Xwindow_mean_ts_diff));
% m_label_bpm = strcat(" mean bpm: ", num2str(Xwindow_mean_bpm));
% title(strcat(" ", m_label_ms, " ", m_label_bpm));
% hold ("off");
Ywindow = m(i-window_size:i,4);
Ywindow_mean_ts_diff = mean(diff(lag_y(idx_y) * sample_rate_ms));
Ywindow_mean_bpm = (60000 / (Ywindow_mean_ts_diff));
% figure(12);
% plot(lag_y, corr_y, lag_y(idx_y), corr_y(idx_y), 'r*', lag_y(idx_y_raw), corr_y(idx_y_raw), 'g*') %z
% hold ("on")
% m_label_ms = strcat(" mean ms: ", num2str(Ywindow_mean_ts_diff));
% m_label_bpm = strcat(" mean bpm: ", num2str(Ywindow_mean_bpm));
% title(strcat(" ", m_label_ms, " ", m_label_bpm));
% hold ("off");
Zwindow = m(i-window_size:i,5);
Zwindow_mean_ts_diff = mean(diff(lag_z(idx_z)* sample_rate_ms));
Zwindow_mean_bpm = (60000 / (Zwindow_mean_ts_diff));
% figure(13);
% plot(lag_z, corr_z, lag_z(idx_z), corr_z(idx_z), 'r*', lag_z(idx_z_raw), corr_z(idx_z_raw), 'g*') %z
% hold ("on")
% m_label_ms = strcat(" mean ms: ", num2str(Zwindow_mean_ts_diff));
% m_label_bpm = strcat(" mean bpm: ", num2str(Zwindow_mean_bpm));
% title(strcat(" ", m_label_ms, " ", m_label_bpm));
% hold ("off");
%magnitude
Mwindow = magnitude(i-window_size:i);
Mwindow_mean_ts_diff = mean(diff(lag_mag(idx_mag)* sample_rate_ms));
Mwindow_mean_bpm = (60000 / (Mwindow_mean_ts_diff));
% figure(14);
% plot(lag_mag, corr_mag, lag_mag(idx_mag), corr_mag(idx_mag), 'r*', lag_mag(idx_mag_raw), corr_mag(idx_mag_raw), 'g*') %z
% hold ("on")
% m_label_ms = strcat(" mean ms: ", num2str(Mwindow_mean_ts_diff));
% m_label_bpm = strcat(" mean bpm: ", num2str(Mwindow_mean_bpm));
% title(strcat(" ", m_label_ms, " ", m_label_bpm));
% hold ("off");
%breakpoints dummy for testing
if(length(idx_x) > length(idx_x_raw))
a = 0; %breakpointdummy
end
if(length(idx_y) > length(idx_y_raw))
a = 0; %breakpointdummy
end
if(length(idx_z) > length(idx_z_raw))
a = 0; %breakpointdummy
end
%Find the most proper axis. We use 3 quantities: mean of corr.
%value, sum of corr val. and number of peaks. Simple normalization
%to get the axis that fullfills the quantities the most.
idx_noZero_x = idx_x(lag_x(idx_x) ~= 0);
idx_noZero_y = idx_y(lag_x(idx_y) ~= 0);
idx_noZero_z = idx_z(lag_x(idx_z) ~= 0);
corr_mean_x = geomean(corr_x(idx_noZero_x(corr_x(idx_noZero_x)>0)));
corr_mean_y = geomean(corr_y(idx_noZero_y(corr_y(idx_noZero_y)>0)));
corr_mean_z = geomean(corr_z(idx_noZero_z(corr_z(idx_noZero_z)>0)));
corr_rms_x = rms(corr_x(idx_x(lag_x(idx_x) ~= 0)));
corr_rms_y = rms(corr_y(idx_y(lag_y(idx_y) ~= 0)));
corr_rms_z = rms(corr_z(idx_z(lag_z(idx_z) ~= 0)));
num_peaks_x = 1;%length(idx_x);
num_peaks_y = 1;%length(idx_y);
num_peaks_z = 1;%length(idx_z);
num_intersection_x = getNumberOfIntersections(corr_x, lag_x, 0.2);
num_intersection_y = getNumberOfIntersections(corr_y, lag_y, 0.2);
num_intersection_z = getNumberOfIntersections(corr_z, lag_z, 0.2);
quantity_matrix = [corr_mean_x corr_mean_y corr_mean_z;
corr_rms_x corr_rms_y corr_rms_z;
num_intersection_x num_intersection_y num_intersection_z];
quantity_matrix_percent(1,:) = quantity_matrix(1,:) ./ sum(quantity_matrix(1,:));
quantity_matrix_percent(2,:) = quantity_matrix(2,:) ./ sum(quantity_matrix(2,:));
quantity_matrix_percent(3,:) = quantity_matrix(3,:) ./ sum(quantity_matrix(3,:));
quantity_factors = sum(quantity_matrix_percent) / 3;
%TODO: Wenn ein quantity wert NaN ist, sind alle NaN...
quantity_x = quantity_factors(1);
quantity_y = quantity_factors(2);
quantity_z = quantity_factors(3);
%choose axis with sum(corr) nearest to 0
%{
corr_sum_xyz = [sum(corr_x) sum(corr_y) sum(corr_z)];
[~,idx_nearest_zero] = min(abs(corr_sum_xyz));
if(idx_nearest_zero == 1)
window_mean_ts_diff = Xwindow_mean_ts_diff;
window_mean_bpm = Xwindow_mean_bpm;
elseif(idx_nearest_zero == 2)
window_mean_ts_diff = Ywindow_mean_ts_diff;
window_mean_bpm = Ywindow_mean_bpm;
else
window_mean_ts_diff = Zwindow_mean_ts_diff;
window_mean_bpm = Zwindow_mean_bpm;
end
%}
%quantity_x = num_intersection_x;
%quantity_y = num_intersection_y;
%quantity_z = num_intersection_z;
if(quantity_x > quantity_y && quantity_x > quantity_z)
window_mean_ts_diff = Xwindow_mean_ts_diff;
window_mean_bpm = Xwindow_mean_bpm;
elseif(quantity_y > quantity_z)
window_mean_ts_diff = Ywindow_mean_ts_diff;
window_mean_bpm = Ywindow_mean_bpm;
else
window_mean_ts_diff = Zwindow_mean_ts_diff;
window_mean_bpm = Zwindow_mean_bpm;
end
if(isnan(window_mean_ts_diff) || isnan(window_mean_bpm))
%do nothing
else
gtError_1D = [gtError_1D, abs(window_mean_bpm - curGtBpm)];
bpm_per_window_ms = [bpm_per_window_ms, window_mean_ts_diff];
bpm_per_window = [bpm_per_window, window_mean_bpm];
end
%3D mean
if(isnan(Dwindow_mean_bpm))
%nothing
else
gtError_3D = [gtError_3D, abs(Dwindow_mean_bpm - curGtBpm)];
bpm_3D = [bpm_3D, Dwindow_mean_bpm];
ms_3D = [ms_3D, Dwindow_mean_ts_diff];
end
%TODO: if correlation value is lower then a treshhold, we are not conducting TODO: change to a real classification instead of a treshhold.
end
end
%TODO: smooth the results using a moving avg or 1d kalman filter.(transition for kalman could be adding the last measured value)
%remove the first 40% of the results, due to starting delays while recording.
%number_to_remove = round(abs(0.1 * length(bpm_per_window_ms)));
%num_all = length(bpm_per_window_ms);
%bpm_per_window_ms = bpm_per_window_ms(number_to_remove:num_all);
%bpm_per_window = bpm_per_window(number_to_remove:num_all);
mean_final_ms = mean(bpm_per_window_ms);
std_final_ms = std(bpm_per_window_ms);
mean_final_bpm = mean(bpm_per_window);
std_final_bpm = std(bpm_per_window);
mean_final_error_1D = mean(gtError_1D);
std_final_error_1D = std(gtError_1D);
mean_final_ms_3D = mean(ms_3D);
std_final_ms_3D = std(ms_3D);
mean_final_bpm_3D = mean(bpm_3D);
std_final_bpm_3D = std(bpm_3D);
mean_final_error_3D = mean(gtError_3D);
std_final_error_3D = std(gtError_3D);
fprintf('%s: mean = %f bpm (%f bpm) stddev = %f bpm (%f bpm) --- 1D\n', strrep(regexprep(filename,'^.*recording_',''),'.txt',''), mean_final_error_1D, mean_final_bpm, std_final_error_1D, std_final_bpm);
fprintf('%s: mean = %f bpm (%f bpm) stddev = %f bpm (%f bpm) --- 3D\n', strrep(regexprep(filename,'^.*recording_',''),'.txt',''), mean_final_error_3D, mean_final_bpm_3D, std_final_error_3D, std_final_bpm_3D);
end
% %1D fft - nicht so der brüller
% z_fft = fft(m(i-window_size:i,5));
% L = length(z_fft);
% Fs = 250;
% P2 = abs(z_fft/L);
% P1 = P2(1:L/2+1);
% P1(2:end-1) = 2*P1(2:end-1);
% f = Fs*(0:(L/2))/L; %nyquist frequence
%
% figure(66);
% plot(f, P1);
%
% %3D fft
% m_3D = m(i-window_size:i, 3);
% m_3D(:,:,2) = m(i-window_size:i, 4);
% m_3D(:,:,3) = m(i-window_size:i, 5);
%
% fft_3D = fftn(m_3D);
%
% %2D fft
% fft_xy = fft2(m(i-window_size:i, 3:4));
% fft_yz = fft2(m(i-window_size:i, 3:4));
%
% fft_test = fft(m(i-window_size:i, 3:5),[],2);
%
% figure(60);
% imagesc(abs(fftshift(fft_test)));
%
% figure(61);
% imagesc(abs(fftshift(fft_xy)));