209 lines
3.9 KiB
Matlab
209 lines
3.9 KiB
Matlab
|
|
clear
|
|
|
|
source("training.m");
|
|
|
|
# load data
|
|
|
|
#run /mnt/firma/kunden/HandyGames/daten/forwardbend/forwardbend_gl_3_subject_1_left.txt.m
|
|
|
|
|
|
#run /mnt/firma/kunden/HandyGames/daten/kneebend/kneebend_gl_0_subject_0_right.txt.m
|
|
|
|
|
|
function C = getC(A, sensor)
|
|
C = [];
|
|
for i = 1:numel(sensor)
|
|
c = A * (sensor{i});
|
|
C = [c C];
|
|
end
|
|
end
|
|
|
|
#function C = getC(A, gyro)
|
|
# C = [];
|
|
# for i = 1500:50:8000
|
|
# win = window(gyro, i);
|
|
# win = flatten(win);
|
|
# c = A * win;
|
|
# C = [c C];
|
|
# end
|
|
#end
|
|
|
|
function cls = getClass(name)
|
|
cls = {};
|
|
cls.name = name;
|
|
cls.samples = {};
|
|
end
|
|
|
|
function m = getM(samples)
|
|
size = length(samples{1}); # length of the first entry(all have the same size)
|
|
m = zeros(size,1); # allocate memory
|
|
for i = 1 : length(samples)
|
|
m += samples{i};
|
|
end
|
|
m /= length(samples);
|
|
end
|
|
|
|
function R = getR(samples)
|
|
size = length(samples{1}); # length of the first entry(all have the same size)
|
|
R = zeros(size,size); # allocate memory
|
|
for i = 1 : length(samples)
|
|
R += samples{i} * samples{i}';
|
|
end
|
|
R /= length(samples);
|
|
end
|
|
|
|
function Q = getQ1(classes)
|
|
samples = {}
|
|
for i = 1 : length(classes)
|
|
samples = [samples classes{i}.samples];
|
|
end
|
|
m = getM(samples);
|
|
R = getR(samples);
|
|
Q = R - m*m';
|
|
end
|
|
|
|
function Q = getQ3(classes)
|
|
size = length(classes{1}.samples{1});
|
|
Q = zeros(size,size);
|
|
for i = 1 : length(classes)
|
|
m = getM(classes{i}.samples);
|
|
R = getR(classes{i}.samples);
|
|
Q += ( R - m*m' );
|
|
end
|
|
Q /= length(classes);
|
|
end
|
|
|
|
function Q = getQ2(classes)
|
|
|
|
numClasses = length(classes);
|
|
size = length(classes{1}.samples{1});
|
|
|
|
sumR = zeros(size, size);
|
|
sumM = zeros(size, size);
|
|
|
|
for k = 1 : numClasses
|
|
R = getR(classes{k}.samples);
|
|
sumR += R;
|
|
end
|
|
|
|
for k = 2 : numClasses
|
|
for l = 1 : k-1
|
|
mk = getM(classes{k}.samples);
|
|
ml = getM(classes{l}.samples);
|
|
sumM += (mk*ml') + (ml*mk');
|
|
end
|
|
end
|
|
|
|
sumM / (numClasses*(numClasses-1))
|
|
|
|
Q = (sumR / numClasses) - (sumM / (numClasses*(numClasses-1)));
|
|
|
|
end
|
|
|
|
function plotC(C, args)
|
|
plot3(C(1,:)', C(2,:)', C(3,:)', args);
|
|
end
|
|
|
|
function show(A)
|
|
|
|
hold on;
|
|
samples = 6;
|
|
|
|
data = getSamplesForClass("forwardbend", samples, 1050, 0.8);
|
|
C = getC(A, data);
|
|
plotC(C, "-1");
|
|
|
|
data = getSamplesForClass("kneebend", samples, 1050, 0.8);
|
|
C = getC(A, data);
|
|
plotC(C, "-2");
|
|
|
|
data = getSamplesForClass("pushups", samples, 1050, 0.8);
|
|
C = getC(A, data);
|
|
plotC(C, "-3");
|
|
|
|
data = getSamplesForClass("situps", samples, 1050, 0.8);
|
|
C = getC(A, data);
|
|
plotC(C, "-4");
|
|
|
|
data = getSamplesForClass("jumpingjack", samples, 1050, 0.8);
|
|
C = getC(A, data);
|
|
plotC(C, "-5");
|
|
|
|
hold off;
|
|
|
|
end
|
|
|
|
function avg = getAvg(classes)
|
|
|
|
size = length(classes{1}.samples{1});
|
|
avg = zeros(size,1);
|
|
cnt = 0;
|
|
|
|
for i = 1:numel(classes)
|
|
for j = 1:numel(classes{i}.samples)
|
|
avg += classes{i}.samples{j};
|
|
++cnt;
|
|
end
|
|
end
|
|
|
|
avg /= cnt;
|
|
|
|
end
|
|
|
|
function res = removeAvg(classes)
|
|
|
|
size = length(classes{1}.samples{1});
|
|
avg = getAvg(classes);
|
|
|
|
for i = 1:numel(classes)
|
|
for j = 1:numel(classes{i}.samples)
|
|
classes{i}.samples{j} = classes{i}.samples{j} - avg;
|
|
end
|
|
end
|
|
|
|
res = classes;
|
|
|
|
end
|
|
|
|
classes = {};
|
|
classes{1}.samples = {};
|
|
classes{2}.samples = {};
|
|
classes{3}.samples = {};
|
|
|
|
classes{1}.samples = [classes{1}.samples [1;2;3;4]];
|
|
classes{1}.samples = [classes{1}.samples [1;2;4;5]];
|
|
|
|
classes{2}.samples = [classes{2}.samples [3;8;9;0]];
|
|
classes{2}.samples = [classes{2}.samples [3;7;5;0]];
|
|
|
|
classes{3}.samples = [classes{3}.samples [9;1;3;2]];
|
|
classes{3}.samples = [classes{3}.samples [7;3;3;2]];
|
|
|
|
Q1 = getQ1(classes);
|
|
Q2 = getQ2(classes);
|
|
Q3 = getQ3(classes);
|
|
|
|
Q1
|
|
Q2
|
|
Q3
|
|
|
|
# get training dataset
|
|
#classes = getTrainData();
|
|
#classes = removeAvg(classes);
|
|
|
|
#Q1 = getQ1(classes);
|
|
#[eVec, eVal] = eigs(Q1, 3, 'lm');
|
|
|
|
#Q2 = getQ2(classes);
|
|
#[eVec, eVal] = eigs(Q2, 3, 'lm');
|
|
|
|
#Q3 = getQ1(classes);
|
|
#[eVec, eVal] = eigs(Q3, 3, 'sm');
|
|
|
|
#avg = getAvg(classes);
|
|
|
|
#A = eVec';
|
|
#show(A, avg);
|
|
|