Files
HandyGames/workspace/main.cpp
2016-01-10 14:43:47 +01:00

130 lines
3.1 KiB
C++

//#include "usingneuralnet.h"
#include <omp.h>
#include <KLib/misc/gnuplot/Gnuplot.h>
#include <KLib/misc/gnuplot/GnuplotSplot.h>
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
#include <vector>
#include "usingpca.h"
//#include "plotFile.h"
//#include "usingneuralnet.h"
int main(void) {
omp_set_dynamic(false);
omp_set_num_threads(3);
runPCA();
//runPlot();
//UsingNeuralNet::run();
/*
std::vector<ClassifiedPattern> patTrain = TrainPCA::getTrainData();
TrainPCA::Matrices m = TrainPCA::getMatrices(patTrain, numFeatures);
std::vector<ClassifiedPattern> patTest = TrainPCA::getTestData();
// construct knn
aKNN<ClassifiedFeature, numFeatures> knn;
for (const ClassifiedPattern& pat : patTrain) {
K::DynColVector<float> vec = m.A1 * K::PCAHelper<float>::toVector(pat.pattern);
std::vector<float> arr;
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
knn.add(ClassifiedFeature(pat.className, arr));
}
knn.build();
K::Gnuplot gp;
K::GnuplotSplot splot;
K::GnuplotSplotElementLines lines[5];
Stats stats;
int xx = 0;
for (const ClassifiedPattern& pat : patTest) {
const int idx = Settings::classToInt(pat.className);
K::DynColVector<float> vec = m.A1 * K::PCAHelper<float>::toVector(pat.pattern);
// get KNN's answer
std::vector<float> arr;
for (int i = 0; i < numFeatures; ++i) {arr.push_back(vec(i));}
std::vector<ClassifiedFeature> neighbors = knn.get(arr.data(), 10);
std::string gotClass = getClass(neighbors);
if (pat.className == gotClass) {stats.match++;}
else if (gotClass == "") {stats.unknown++;}
else {stats.error++;}
if (++xx % 16 == 0) {
std::cout << pat.className << " -> " << gotClass << std::endl;
std::cout << stats.getSum() << ":" << stats.match << ":" << stats.error << ":" << stats.unknown << std::endl;
std::cout << stats.match/stats.getSum() << ":" << stats.error/stats.getSum() << ":" << stats.unknown/stats.getSum() << std::endl;
}
// plot
K::GnuplotPoint3 p3(vec(0), vec(1), vec(2));
lines[idx].add(p3);
}
for (int i = 0; i < 5; ++i) {lines[i].setColorHex(COLORS[i]);}
for (int i = 0; i < 5; ++i) {splot.add(&lines[i]);}
gp.setDebugOutput(false);
gp.draw(splot);
gp.flush();
sleep(10000);
*/
// std::vector<std::vector<float>> vecs = {vec1, vec2};
// std::cout << K::PCAHelper<float>::getR(vecs) << std::endl;
// std::cout << K::PCAHelper<float>::getM(vecs) << std::endl;
// K::PCAHelper<float>::R r;
// r.add(vec1); r.add(vec2); std::cout << r.get() << std::endl;
// Eigen::Vector3f v1; v1 << 1,2,3;
// Eigen::Vector3f v2; v2 << 3,4,5;
// std::vector<Eigen::Vector3f> vecs2 = {v1, v2};
// std::cout << K::PCAHelper<float>::getR(vecs2) << std::endl;
// std::cout << K::PCAHelper<float>::getM(vecs2) << std::endl;
// UsingNeuralNet::run();
//UsingPCA::run();
// UsingNeuralNet::debugPlot(
// Practice {
// PracticeType::KNEEBEND,
// SensorReader::read("/mnt/firma/kunden/HandyGames/daten/kneebend/kneebend_gl_0_subject_0_right.txt"),
// {2650, 4750, 6750, 8800, 10800, 12800}
// //{3500, 5000, 8300, 9900, 11550}
// }
// );
//sleep(1000);
}