added classification, results are bad...
This commit is contained in:
67
toni/octave/genfeatures.m
Normal file
67
toni/octave/genfeatures.m
Normal file
@@ -0,0 +1,67 @@
|
||||
display("Generating Features")
|
||||
|
||||
#load and plot raw data
|
||||
#{
|
||||
data structure of cellarray classes:
|
||||
classes[1 to 5]
|
||||
samples[1 to trainsetPerClass]
|
||||
raw[1 to 3]
|
||||
Accel[start:pEnd]
|
||||
Gyro[start:pEnd]
|
||||
Magnet[start:pEnd]
|
||||
|
||||
access the cells using classes{u}.samples{v}.raw{w}
|
||||
#}
|
||||
source("functions.m");
|
||||
|
||||
classes = {};
|
||||
classes = getRawTrainData();
|
||||
|
||||
#outPath = "/home/toni/Documents/handygames/HandyGames/toni/img/raw"
|
||||
#plotData(classes, outPath);
|
||||
|
||||
#calc and plot filtered data
|
||||
filteredClasses = filterData(classes);
|
||||
|
||||
#outPath = "/home/toni/Documents/handygames/HandyGames/toni/img/filtered";
|
||||
#plotData(filteredClasses, outPath);
|
||||
|
||||
#create sliding windows and add 6 additional signals pca and magnitude
|
||||
#{
|
||||
data structure of windowedClasses:
|
||||
classes[1 to 5]
|
||||
samples[1 to trainsetPerClass]
|
||||
raw[1 to 15] <--- 15 different signals
|
||||
3x WindowsAccel (X, Y, Z)
|
||||
Win, Win, Win, Win ... <--- single matrices
|
||||
3x WindowsGyro (X, Y, Z)
|
||||
Win, Win, Win, Win ... <--- single matrices
|
||||
3x WindowsMagnet (X, Y, Z)
|
||||
Win, Win, Win, Win ... <--- single matrices
|
||||
|
||||
---> add 6 additional sensors: pca and magnitude
|
||||
3x WindowsPCA (Accel, Gyro, Magnet)
|
||||
Win, Win, Win, Win ... <--- single matrices
|
||||
3x WindowsMagnitude (Accel, Gyro, Magnet)
|
||||
Win, Win, Win, Win ... <--- single matrices
|
||||
|
||||
access the cells using classes{u}.samples{v}.raw{w}.wins{}
|
||||
|
||||
pca uses the eigenvector with the heighest eigenvalue as axis and projects the signals onto it for each sensor.
|
||||
magnitude is calculated using sqrt(x^2 + y^2 + z^2) for each sensor.
|
||||
#}
|
||||
windowedClasses = windowData(filteredClasses);
|
||||
|
||||
#calculated features for the 5 signales (x, y, z, MG, PCA) of a sensor
|
||||
#{
|
||||
data structure of features
|
||||
[classLabel, binMeans, rms, psd, windowMean, windowSTD, windowVariance, windowKurtosis, windowIQR]
|
||||
#}
|
||||
features = featureCalculation(windowedClasses);
|
||||
|
||||
#save features
|
||||
save features.txt features;
|
||||
display("saved features into features.txt");
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user