Files
ESP8266lib/ext/sens/BME280.h
kazu ac74587ee7 fixed some issue with SoftI2C not working (missing delay)
added code for a waveshare eInk
refactored some old code to match with the new SoftI2C
2020-10-18 10:49:59 +02:00

284 lines
8.9 KiB
C++

#ifndef SENS_BME280
#define SENS_BME280
#include "../../Platforms.h"
#include "../../Debug.h"
template <typename I2C> class BME280 {
static constexpr const char* NAME = "BME280";
static constexpr uint8_t ADDR7 = 0b1110110;
static constexpr uint8_t REG_CTRL1 = 0xF2; // humidity
static constexpr uint8_t REG_CTRL2 = 0xF4; // temp, pressure, mode
static constexpr uint8_t REG_STATUS = 0xF3;
static constexpr uint8_t REG_PRESSURE = 0xF7;
static constexpr uint8_t REG_TEMPERATURE= 0xFA;
static constexpr uint8_t REG_HUMIDITY = 0xFD;
static constexpr uint8_t REG_DIG_T1 = 0x88;
static constexpr uint8_t REG_DIG_T2 = 0x8A;
static constexpr uint8_t REG_DIG_T3 = 0x8C;
public:
bool started = false;
/** internal sensor calibration values */
struct Calibration {
uint16_t dig_T1 = 0;
int16_t dig_T2 = 0;
int16_t dig_T3 = 0;
uint16_t dig_P1 = 0;
int16_t dig_P2 = 0;
int16_t dig_P3 = 0;
int16_t dig_P4 = 0;
int16_t dig_P5 = 0;
int16_t dig_P6 = 0;
int16_t dig_P7 = 0;
int16_t dig_P8 = 0;
int16_t dig_P9 = 0;
uint8_t dig_H1 = 0;
int16_t dig_H2 = 0;
uint8_t dig_H3 = 0;
int16_t dig_H4 = 0;
int16_t dig_H5 = 0;
int8_t dig_H6 = 0;
} cal;
I2C& i2c;
BME280(I2C& i2c) : i2c(i2c) {
}
bool isPresent() {
return i2c.query(ADDR7);
}
private:
void readCalib() {
debugMod(NAME, "readCalib()");
// read all 24 calibration bytes for temperature and pressure
uint8_t b1[24];
i2c.readReg(ADDR7, REG_DIG_T1, 24, b1);
cal.dig_T1 = (b1[1] << 8) | b1[0];
cal.dig_T2 = (b1[3] << 8) | b1[2];
cal.dig_T3 = (b1[5] << 8) | b1[4];
cal.dig_P1 = (b1[7] << 8) | b1[6];
cal.dig_P2 = (b1[9] << 8) | b1[8];
cal.dig_P3 = (b1[11] << 8) | b1[10];
cal.dig_P4 = (b1[13] << 8) | b1[12];
cal.dig_P5 = (b1[15] << 8) | b1[14];
cal.dig_P6 = (b1[17] << 8) | b1[16];
cal.dig_P7 = (b1[19] << 8) | b1[18];
cal.dig_P8 = (b1[21] << 8) | b1[20];
cal.dig_P9 = (b1[23] << 8) | b1[22];
// humidity
i2c.readReg(ADDR7, 0xA1, 1, &cal.dig_H1);
i2c.readReg(ADDR7, 0xE1, 7, b1);
cal.dig_H2 = (b1[1] << 8) | b1[0];
cal.dig_H3 = b1[3];
cal.dig_H4 = (b1[3] << 4) | (b1[4] & 0b000001111);
cal.dig_H5 = (b1[5] << 4) | ((b1[4] & 0b111100000) >> 4);
cal.dig_H6 = (b1[6]);
//os_printf("calib temp: %d %d %d\n", cal.dig_T1, cal.dig_T2, cal.dig_T3);
//os_printf("calib pres: %d %d %d %d %d %d %d %d %d\n", cal.dig_P1, cal.dig_P2, cal.dig_P3, cal.dig_P4, cal.dig_P5, cal.dig_P6, cal.dig_P7, cal.dig_P8, cal.dig_P9);
//os_printf("calib humi: %d %d %d %d %d %d\n", cal.dig_H1, cal.dig_H2, cal.dig_H3, cal.dig_H4, cal.dig_H5, cal.dig_H6);
//debugMod3(NAME, "calTemp: %d %d %d", cal.dig_T1, cal.dig_T2, cal.dig_T3);
//debugMod9(NAME, "calPres: %d %d %d %d %d %d %d %d %d", cal.dig_P1, cal.dig_P2, cal.dig_P3, cal.dig_P4, cal.dig_P5, cal.dig_P6, cal.dig_P7, cal.dig_P8, cal.dig_P9);
//debugMod6(NAME, "calHumi: %d %d %d %d %d %d", cal.dig_H1, cal.dig_H2, cal.dig_H3, cal.dig_H4, cal.dig_H5, cal.dig_H6);
}
void start() {
debugMod(NAME, "start()");
const uint8_t cfgHumi = 0b101; // 16x oversampling
const uint8_t cfgPres = 0b101; // 16x oversampling
const uint8_t cfgTemp = 0b101; // 16x oversampling
const uint8_t cfgMode = 0b11;
const uint8_t cfg1 = (cfgHumi << 1);
const uint8_t cfg2 = (cfgTemp << 5) | (cfgPres << 2) | (cfgMode << 0);
i2c.writeReg(ADDR7, REG_CTRL1, 1, &cfg1);
i2c.writeReg(ADDR7, REG_CTRL2, 1, &cfg2);
}
public:
void startOnce() {
if (started) {return;}
debugMod(NAME, "startOnce()");
readCalib();
start();
started = true;
}
uint8_t getStatus() {
uint8_t res[1];
i2c.readReg(ADDR7, REG_STATUS, 1, res);
//os_printf("Status: %d \n", res[0]);
return 0;
}
/** get current pressure in hPa */
float getPressure() {
uint8_t res[3];
i2c.readReg(ADDR7, REG_PRESSURE, 3, res);
//os_printf("res: %d - %d - %d \n", res[0], res[1], res[2]);
const uint32_t tmp = ((res[0] << 16) | (res[1] << 8) | (res[2] << 0)) >> 4;
const uint32_t pres = BME280_compensate_P_int64(tmp);
const float presF = pres / 256.0f / 100.0f; // convert from Q24.8 to float and from Pa to hPa
//const uint32_t p0 = pres / 256;
//const uint32_t p1 = (uint32_t) presF;
//const uint32_t p2 = (presF - p1) * 100000;
//debugMod4(NAME, "[pres] ADC: %d -> %d Pa | %d.%d hPa", tmp, p0, p1,p2);
return presF;
}
float getTemperature() {
uint8_t res[3];
i2c.readReg(ADDR7, REG_TEMPERATURE, 3, res);
//os_printf("res: %d - %d - %d \n", res[0], res[1], res[2]);
const uint32_t tmp = ((res[0] << 16) | (res[1] << 8) | (res[2] << 0)) >> 4;
const int32_t temp = BME280_compensate_T_int32(tmp);
const float tempF = temp / 100.0f;
//debugMod2(NAME, "[temp] ADC: %d -> %d", tmp, temp);
return tempF;
}
float getHumidity() {
uint8_t res[2];
i2c.readReg(ADDR7, REG_HUMIDITY, 2, res);
//os_printf("res: %d - %d \n", res[0], res[1]);
const uint32_t tmp = (res[0] << 8) | (res[1] << 0);
const int32_t humi = bme280_compensate_H_int32(tmp);
const float humiF = humi / 1024.0f;
//const uint16_t h0 = humi / 1024;
//const uint16_t h1 = (uint16_t) humiF;
//const uint16_t h2 = (humiF - humi) * 10000;
//debugMod4(NAME, "[humi] ADC: %d -> %d -> %d.%d %%", tmp, h0, h1,h2);
return humiF;
}
/*
bool readRegister(const uint8_t addr, uint8_t* dst, const uint8_t len) {
bool ok;
// address the slave in write mode and select the first register to read
ok = i2c.startWrite(ADDR7);
if (!ok) {printf("failed start write\n"); return false;}
ok = i2c.writeByteAndCheck(addr);
if (!ok) {printf("failed to select register %d\n", addr); return false;}
//i2c::stop();
// address the slave in read mode and read [len] registers
ok = i2c.startRead(ADDR7);
if (!ok) {printf("failed start read\n"); return 0;}
i2c.readBytes(dst, len);
// done
i2c.stop();
return true;
}
bool writeRegister(const uint8_t addr, const uint8_t* src, const uint8_t len) {
bool ok;
// address the slave in write mode and select the first register to read
ok = i2c.startWrite(ADDR7);
if (!ok) {printf("failed start write\n"); return false;}
ok = i2c.writeByteAndCheck(addr);
if (!ok) {printf("failed to select register %d\n", addr); return false;}
ok = i2c.writeBytesAndCheck(src, len);
if (!ok) {printf("failed to write register contents \n"); return false;}
// done
i2c.stop();
return true;
}
*/
private:
/** conversions from ADC values to real-world values. from Bosch BMP280 manual! */
using BME280_S32_t = int32_t;
using BME280_U32_t = uint32_t;
using BME280_S64_t = int64_t;
BME280_S32_t t_fine = 0;
// Returns temperature in DegC, resolution is 0.01 DegC. Output value of “5123” equals 51.23 DegC.
// t_fine carries fine temperature as global value
BME280_S32_t BME280_compensate_T_int32(BME280_S32_t adc_T) {
BME280_S32_t var1, var2, T;
var1 = ((((adc_T>>3) - ((BME280_S32_t)cal.dig_T1<<1))) * ((BME280_S32_t)cal.dig_T2)) >> 11;
var2 = (((((adc_T>>4) - ((BME280_S32_t)cal.dig_T1)) * ((adc_T>>4) - ((BME280_S32_t)cal.dig_T1))) >> 12) * ((BME280_S32_t)cal.dig_T3)) >> 14;
t_fine = var1 + var2;
T = (t_fine * 5 + 128) >> 8;
return T;
}
// Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24 integer bits and 8 fractional bits).
// Output value of “24674867” represents 24674867/256 = 96386.2 Pa = 963.862 hPa
BME280_U32_t BME280_compensate_P_int64(BME280_S32_t adc_P) {
BME280_S64_t var1, var2, p;
var1 = ((BME280_S64_t)t_fine) - 128000;
var2 = var1 * var1 * (BME280_S64_t)cal.dig_P6;
var2 = var2 + ((var1*(BME280_S64_t)cal.dig_P5)<<17);
var2 = var2 + (((BME280_S64_t)cal.dig_P4)<<35);
var1 = ((var1 * var1 * (BME280_S64_t)cal.dig_P3)>>8) + ((var1 * (BME280_S64_t)cal.dig_P2)<<12);
var1 = (((((BME280_S64_t)1)<<47)+var1))*((BME280_S64_t)cal.dig_P1)>>33;
if (var1 == 0) {return 0;} // avoid exception caused by division by zero
p = 1048576-adc_P;
p = (((p<<31)-var2)*3125)/var1;
var1 = (((BME280_S64_t)cal.dig_P9) * (p>>13) * (p>>13)) >> 25;
var2 = (((BME280_S64_t)cal.dig_P8) * p) >> 19;
p = ((p + var1 + var2) >> 8) + (((BME280_S64_t)cal.dig_P7)<<4);
return (BME280_U32_t)p;
}
// Returns humidity in %RH as unsigned 32 bit integer in Q22.10 format (22 integer and 10 fractional bits).
// Output value of “47445” represents 47445/1024 = 46.333 %RH
BME280_U32_t bme280_compensate_H_int32(BME280_S32_t adc_H) {
BME280_S32_t v_x1_u32r;
v_x1_u32r = (t_fine - ((BME280_S32_t)76800));
v_x1_u32r = (((((adc_H << 14) - (((BME280_S32_t)cal.dig_H4) << 20) - (((BME280_S32_t)cal.dig_H5) * v_x1_u32r)) +
((BME280_S32_t)16384)) >> 15) * (((((((v_x1_u32r * ((BME280_S32_t)cal.dig_H6)) >> 10) * (((v_x1_u32r *
((BME280_S32_t)cal.dig_H3)) >> 11) + ((BME280_S32_t)32768))) >> 10) + ((BME280_S32_t)2097152)) *
((BME280_S32_t)cal.dig_H2) + 8192) >> 14));
v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) * ((BME280_S32_t)cal.dig_H1)) >>
4));
v_x1_u32r = (v_x1_u32r < 0 ? 0 : v_x1_u32r);
v_x1_u32r = (v_x1_u32r > 419430400 ? 419430400 : v_x1_u32r);
return (BME280_U32_t)(v_x1_u32r>>12);
}
};
#endif