1128 lines
31 KiB
C++
1128 lines
31 KiB
C++
#ifndef SENS_VL53L0X_H
|
|
#define SENS_VL53L0X_H
|
|
|
|
#include "../../io/SoftI2C.h"
|
|
#include "../../Debug.h"
|
|
|
|
/**
|
|
* TOF distance measurement sensor
|
|
*
|
|
* there seems to be no register-map from the vendor. only a poor API..
|
|
* used values from this library:
|
|
* https://github.com/pololu/vl53l0x-arduino/blob/master/VL53L0X.h
|
|
* https://github.com/pololu/vl53l0x-arduino/blob/master/VL53L0X.cpp
|
|
*/
|
|
class VL53L0X {
|
|
|
|
private:
|
|
|
|
static constexpr const char* NAME = "VL53L0X";
|
|
|
|
static constexpr uint8_t ADDR = 0b0101001 ;
|
|
|
|
|
|
bool inited = false;
|
|
|
|
|
|
enum Register {
|
|
|
|
SYSRANGE_START = 0x00,
|
|
|
|
SYSTEM_THRESH_HIGH = 0x0C,
|
|
SYSTEM_THRESH_LOW = 0x0E,
|
|
|
|
SYSTEM_SEQUENCE_CONFIG = 0x01,
|
|
SYSTEM_RANGE_CONFIG = 0x09,
|
|
SYSTEM_INTERMEASUREMENT_PERIOD = 0x04,
|
|
|
|
SYSTEM_INTERRUPT_CONFIG_GPIO = 0x0A,
|
|
|
|
GPIO_HV_MUX_ACTIVE_HIGH = 0x84,
|
|
|
|
SYSTEM_INTERRUPT_CLEAR = 0x0B,
|
|
|
|
RESULT_INTERRUPT_STATUS = 0x13,
|
|
RESULT_RANGE_STATUS = 0x14,
|
|
|
|
RESULT_CORE_AMBIENT_WINDOW_EVENTS_RTN = 0xBC,
|
|
RESULT_CORE_RANGING_TOTAL_EVENTS_RTN = 0xC0,
|
|
RESULT_CORE_AMBIENT_WINDOW_EVENTS_REF = 0xD0,
|
|
RESULT_CORE_RANGING_TOTAL_EVENTS_REF = 0xD4,
|
|
RESULT_PEAK_SIGNAL_RATE_REF = 0xB6,
|
|
|
|
ALGO_PART_TO_PART_RANGE_OFFSET_MM = 0x28,
|
|
|
|
I2C_SLAVE_DEVICE_ADDRESS = 0x8A,
|
|
|
|
MSRC_CONFIG_CONTROL = 0x60,
|
|
|
|
PRE_RANGE_CONFIG_MIN_SNR = 0x27,
|
|
PRE_RANGE_CONFIG_VALID_PHASE_LOW = 0x56,
|
|
PRE_RANGE_CONFIG_VALID_PHASE_HIGH = 0x57,
|
|
PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT = 0x64,
|
|
|
|
FINAL_RANGE_CONFIG_MIN_SNR = 0x67,
|
|
FINAL_RANGE_CONFIG_VALID_PHASE_LOW = 0x47,
|
|
FINAL_RANGE_CONFIG_VALID_PHASE_HIGH = 0x48,
|
|
FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT = 0x44,
|
|
|
|
PRE_RANGE_CONFIG_SIGMA_THRESH_HI = 0x61,
|
|
PRE_RANGE_CONFIG_SIGMA_THRESH_LO = 0x62,
|
|
|
|
PRE_RANGE_CONFIG_VCSEL_PERIOD = 0x50,
|
|
PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x51,
|
|
PRE_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x52,
|
|
|
|
SYSTEM_HISTOGRAM_BIN = 0x81,
|
|
HISTOGRAM_CONFIG_INITIAL_PHASE_SELECT = 0x33,
|
|
HISTOGRAM_CONFIG_READOUT_CTRL = 0x55,
|
|
|
|
FINAL_RANGE_CONFIG_VCSEL_PERIOD = 0x70,
|
|
FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x71,
|
|
FINAL_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x72,
|
|
CROSSTALK_COMPENSATION_PEAK_RATE_MCPS = 0x20,
|
|
|
|
MSRC_CONFIG_TIMEOUT_MACROP = 0x46,
|
|
|
|
SOFT_RESET_GO2_SOFT_RESET_N = 0xBF,
|
|
IDENTIFICATION_MODEL_ID = 0xC0,
|
|
IDENTIFICATION_REVISION_ID = 0xC2,
|
|
|
|
OSC_CALIBRATE_VAL = 0xF8,
|
|
|
|
GLOBAL_CONFIG_VCSEL_WIDTH = 0x32,
|
|
GLOBAL_CONFIG_SPAD_ENABLES_REF_0 = 0xB0,
|
|
GLOBAL_CONFIG_SPAD_ENABLES_REF_1 = 0xB1,
|
|
GLOBAL_CONFIG_SPAD_ENABLES_REF_2 = 0xB2,
|
|
GLOBAL_CONFIG_SPAD_ENABLES_REF_3 = 0xB3,
|
|
GLOBAL_CONFIG_SPAD_ENABLES_REF_4 = 0xB4,
|
|
GLOBAL_CONFIG_SPAD_ENABLES_REF_5 = 0xB5,
|
|
|
|
GLOBAL_CONFIG_REF_EN_START_SELECT = 0xB6,
|
|
DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD = 0x4E,
|
|
DYNAMIC_SPAD_REF_EN_START_OFFSET = 0x4F,
|
|
POWER_MANAGEMENT_GO1_POWER_FORCE = 0x80,
|
|
|
|
VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV = 0x89,
|
|
|
|
ALGO_PHASECAL_LIM = 0x30,
|
|
ALGO_PHASECAL_CONFIG_TIMEOUT = 0x30,
|
|
|
|
};
|
|
|
|
// Calculate macro period in *nanoseconds* from VCSEL period in PCLKs
|
|
// based on VL53L0X_calc_macro_period_ps()
|
|
// PLL_period_ps = 1655; macro_period_vclks = 2304
|
|
#define calcMacroPeriod(vcsel_period_pclks) ((((uint32_t)2304 * (vcsel_period_pclks) * 1655) + 500) / 1000)
|
|
|
|
// Decode VCSEL (vertical cavity surface emitting laser) pulse period in PCLKs
|
|
// from register value
|
|
// based on VL53L0X_decode_vcsel_period()
|
|
#define decodeVcselPeriod(reg_val) (((reg_val) + 1) << 1)
|
|
|
|
// Encode VCSEL pulse period register value from period in PCLKs
|
|
// based on VL53L0X_encode_vcsel_period()
|
|
#define encodeVcselPeriod(period_pclks) (((period_pclks) >> 1) - 1)
|
|
|
|
uint8_t stop_variable;
|
|
uint32_t measurement_timing_budget_us;
|
|
|
|
struct SequenceStepEnables {
|
|
bool tcc, msrc, dss, pre_range, final_range;
|
|
};
|
|
|
|
struct SequenceStepTimeouts {
|
|
uint16_t pre_range_vcsel_period_pclks, final_range_vcsel_period_pclks;
|
|
uint16_t msrc_dss_tcc_mclks, pre_range_mclks, final_range_mclks;
|
|
uint32_t msrc_dss_tcc_us, pre_range_us, final_range_us;
|
|
};
|
|
|
|
enum vcselPeriodType {
|
|
VcselPeriodPreRange,
|
|
VcselPeriodFinalRange
|
|
};
|
|
|
|
|
|
private:
|
|
|
|
bool init() {
|
|
|
|
debugMod(NAME, "init()");
|
|
|
|
|
|
// VL53L0X_DataInit() begin
|
|
|
|
// // sensor uses 1V8 mode for I/O by default; switch to 2V8 mode if necessary
|
|
// if (io_2v8)
|
|
// {
|
|
// writeReg8(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV,
|
|
// readReg8(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV) | 0x01); // set bit 0
|
|
// }
|
|
|
|
// "Set I2C standard mode"
|
|
writeReg8(0x88, 0x00);
|
|
|
|
writeReg8(0x80, 0x01);
|
|
writeReg8(0xFF, 0x01);
|
|
writeReg8(0x00, 0x00);
|
|
stop_variable = readReg8(0x91);
|
|
writeReg8(0x00, 0x01);
|
|
writeReg8(0xFF, 0x00);
|
|
writeReg8(0x80, 0x00);
|
|
|
|
// disable SIGNAL_RATE_MSRC (bit 1) and SIGNAL_RATE_PRE_RANGE (bit 4) limit checks
|
|
writeReg8(MSRC_CONFIG_CONTROL, readReg8(MSRC_CONFIG_CONTROL) | 0x12);
|
|
|
|
// set final range signal rate limit to 0.25 MCPS (million counts per second)
|
|
////////setSignalRateLimit(0.25);
|
|
|
|
writeReg8(SYSTEM_SEQUENCE_CONFIG, 0xFF);
|
|
|
|
// VL53L0X_DataInit() end
|
|
|
|
// VL53L0X_StaticInit() begin
|
|
|
|
debugMod(NAME, "getting SPAD info");
|
|
uint8_t spad_count;
|
|
bool spad_type_is_aperture;
|
|
if (!getSpadInfo(&spad_count, &spad_type_is_aperture)) {
|
|
debugMod(NAME, "failed to get SPAD info");
|
|
return false;
|
|
}
|
|
|
|
// The SPAD map (RefGoodSpadMap) is read by VL53L0X_get_info_from_device() in
|
|
// the API, but the same data seems to be more easily readable from
|
|
// GLOBAL_CONFIG_SPAD_ENABLES_REF_0 through _6, so read it from there
|
|
uint8_t ref_spad_map[6];
|
|
readRegN(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map, 6);
|
|
|
|
|
|
|
|
|
|
|
|
// -- VL53L0X_set_reference_spads() begin (assume NVM values are valid)
|
|
writeReg8(0xFF, 0x01);
|
|
writeReg8(DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00);
|
|
writeReg8(DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C);
|
|
writeReg8(0xFF, 0x00);
|
|
writeReg8(GLOBAL_CONFIG_REF_EN_START_SELECT, 0xB4);
|
|
|
|
uint8_t first_spad_to_enable = spad_type_is_aperture ? 12 : 0; // 12 is the first aperture spad
|
|
uint8_t spads_enabled = 0;
|
|
|
|
for (uint8_t i = 0; i < 48; i++) {
|
|
if (i < first_spad_to_enable || spads_enabled == spad_count) {
|
|
// This bit is lower than the first one that should be enabled, or
|
|
// (reference_spad_count) bits have already been enabled, so zero this bit
|
|
ref_spad_map[i / 8] &= ~(1 << (i % 8));
|
|
} else if ((ref_spad_map[i / 8] >> (i % 8)) & 0x1) {
|
|
spads_enabled++;
|
|
}
|
|
}
|
|
|
|
debugMod1(NAME, "enabled SPADs: %d", spads_enabled);
|
|
|
|
writeRegN(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map, 6);
|
|
|
|
// -- VL53L0X_set_reference_spads() end
|
|
|
|
// -- VL53L0X_load_tuning_settings() begin
|
|
// DefaultTuningSettings from vl53l0x_tuning.h
|
|
|
|
writeReg8(0xFF, 0x01);
|
|
writeReg8(0x00, 0x00);
|
|
|
|
writeReg8(0xFF, 0x00);
|
|
writeReg8(0x09, 0x00);
|
|
writeReg8(0x10, 0x00);
|
|
writeReg8(0x11, 0x00);
|
|
|
|
writeReg8(0x24, 0x01);
|
|
writeReg8(0x25, 0xFF);
|
|
writeReg8(0x75, 0x00);
|
|
|
|
writeReg8(0xFF, 0x01);
|
|
writeReg8(0x4E, 0x2C);
|
|
writeReg8(0x48, 0x00);
|
|
writeReg8(0x30, 0x20);
|
|
|
|
writeReg8(0xFF, 0x00);
|
|
writeReg8(0x30, 0x09);
|
|
writeReg8(0x54, 0x00);
|
|
writeReg8(0x31, 0x04);
|
|
writeReg8(0x32, 0x03);
|
|
writeReg8(0x40, 0x83);
|
|
writeReg8(0x46, 0x25);
|
|
writeReg8(0x60, 0x00);
|
|
writeReg8(0x27, 0x00);
|
|
writeReg8(0x50, 0x06);
|
|
writeReg8(0x51, 0x00);
|
|
writeReg8(0x52, 0x96);
|
|
writeReg8(0x56, 0x08);
|
|
writeReg8(0x57, 0x30);
|
|
writeReg8(0x61, 0x00);
|
|
writeReg8(0x62, 0x00);
|
|
writeReg8(0x64, 0x00);
|
|
writeReg8(0x65, 0x00);
|
|
writeReg8(0x66, 0xA0);
|
|
|
|
writeReg8(0xFF, 0x01);
|
|
writeReg8(0x22, 0x32);
|
|
writeReg8(0x47, 0x14);
|
|
writeReg8(0x49, 0xFF);
|
|
writeReg8(0x4A, 0x00);
|
|
|
|
writeReg8(0xFF, 0x00);
|
|
writeReg8(0x7A, 0x0A);
|
|
writeReg8(0x7B, 0x00);
|
|
writeReg8(0x78, 0x21);
|
|
|
|
writeReg8(0xFF, 0x01);
|
|
writeReg8(0x23, 0x34);
|
|
writeReg8(0x42, 0x00);
|
|
writeReg8(0x44, 0xFF);
|
|
writeReg8(0x45, 0x26);
|
|
writeReg8(0x46, 0x05);
|
|
writeReg8(0x40, 0x40);
|
|
writeReg8(0x0E, 0x06);
|
|
writeReg8(0x20, 0x1A);
|
|
writeReg8(0x43, 0x40);
|
|
|
|
writeReg8(0xFF, 0x00);
|
|
writeReg8(0x34, 0x03);
|
|
writeReg8(0x35, 0x44);
|
|
|
|
writeReg8(0xFF, 0x01);
|
|
writeReg8(0x31, 0x04);
|
|
writeReg8(0x4B, 0x09);
|
|
writeReg8(0x4C, 0x05);
|
|
writeReg8(0x4D, 0x04);
|
|
|
|
writeReg8(0xFF, 0x00);
|
|
writeReg8(0x44, 0x00);
|
|
writeReg8(0x45, 0x20);
|
|
writeReg8(0x47, 0x08);
|
|
writeReg8(0x48, 0x28);
|
|
writeReg8(0x67, 0x00);
|
|
writeReg8(0x70, 0x04);
|
|
writeReg8(0x71, 0x01);
|
|
writeReg8(0x72, 0xFE);
|
|
writeReg8(0x76, 0x00);
|
|
writeReg8(0x77, 0x00);
|
|
|
|
writeReg8(0xFF, 0x01);
|
|
writeReg8(0x0D, 0x01);
|
|
|
|
writeReg8(0xFF, 0x00);
|
|
writeReg8(0x80, 0x01);
|
|
writeReg8(0x01, 0xF8);
|
|
|
|
writeReg8(0xFF, 0x01);
|
|
writeReg8(0x8E, 0x01);
|
|
writeReg8(0x00, 0x01);
|
|
writeReg8(0xFF, 0x00);
|
|
writeReg8(0x80, 0x00);
|
|
|
|
// -- VL53L0X_load_tuning_settings() end
|
|
|
|
// "Set interrupt config to new sample ready"
|
|
// -- VL53L0X_SetGpioConfig() begin
|
|
|
|
writeReg8(SYSTEM_INTERRUPT_CONFIG_GPIO, 0x04);
|
|
writeReg8(GPIO_HV_MUX_ACTIVE_HIGH, readReg8(GPIO_HV_MUX_ACTIVE_HIGH) & ~0x10); // active low
|
|
writeReg8(SYSTEM_INTERRUPT_CLEAR, 0x01);
|
|
|
|
// -- VL53L0X_SetGpioConfig() end
|
|
|
|
measurement_timing_budget_us = getMeasurementTimingBudget();
|
|
debugMod1(NAME, "timing budget: %d", measurement_timing_budget_us)
|
|
|
|
|
|
// "Disable MSRC and TCC by default"
|
|
// MSRC = Minimum Signal Rate Check
|
|
// TCC = Target CentreCheck
|
|
// -- VL53L0X_SetSequenceStepEnable() begin
|
|
|
|
writeReg8(SYSTEM_SEQUENCE_CONFIG, 0xE8);
|
|
|
|
// -- VL53L0X_SetSequenceStepEnable() end
|
|
|
|
// KAZU
|
|
setVcselPulsePeriod(VcselPeriodPreRange, 18);
|
|
setVcselPulsePeriod(VcselPeriodFinalRange, 14);
|
|
|
|
|
|
// "Recalculate timing budget"
|
|
debugMod(NAME, "new setting timing budget");
|
|
bool ok = setMeasurementTimingBudget(measurement_timing_budget_us);
|
|
if (!ok) {
|
|
debugMod(NAME, "failed to set timing budget");
|
|
return false;
|
|
}
|
|
|
|
|
|
// VL53L0X_StaticInit() end
|
|
// VL53L0X_PerformRefCalibration() begin (VL53L0X_perform_ref_calibration())
|
|
// -- VL53L0X_perform_vhv_calibration() begin
|
|
|
|
debugMod(NAME, "VHV calibration");
|
|
writeReg8(SYSTEM_SEQUENCE_CONFIG, 0x01);
|
|
if (!performSingleRefCalibration(0x40)) {
|
|
debugMod(NAME, "VHV calibration failed");
|
|
return false;
|
|
} else {
|
|
debugMod(NAME, "VHV calibration OK");
|
|
}
|
|
|
|
// -- VL53L0X_perform_vhv_calibration() end
|
|
// -- VL53L0X_perform_phase_calibration() begin
|
|
|
|
debugMod(NAME, "PHASE calibration");
|
|
writeReg8(SYSTEM_SEQUENCE_CONFIG, 0x02);
|
|
if (!performSingleRefCalibration(0x00)) {
|
|
debugMod(NAME, "PHASE calibration failed");
|
|
return false;
|
|
} else {
|
|
debugMod(NAME, "PHASE calibration OK");
|
|
}
|
|
|
|
// -- VL53L0X_perform_phase_calibration() end
|
|
|
|
// "restore the previous Sequence Config"
|
|
writeReg8(SYSTEM_SEQUENCE_CONFIG, 0xE8);
|
|
|
|
// VL53L0X_PerformRefCalibration() end
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Get reference SPAD (single photon avalanche diode) count and type
|
|
// based on VL53L0X_get_info_from_device(),
|
|
// but only gets reference SPAD count and type
|
|
bool getSpadInfo(uint8_t * count, bool * type_is_aperture) {
|
|
uint8_t tmp;
|
|
|
|
writeReg8(0x80, 0x01);
|
|
writeReg8(0xFF, 0x01);
|
|
writeReg8(0x00, 0x00);
|
|
|
|
writeReg8(0xFF, 0x06);
|
|
writeReg8(0x83, readReg8(0x83) | 0x04);
|
|
writeReg8(0xFF, 0x07);
|
|
writeReg8(0x81, 0x01);
|
|
|
|
writeReg8(0x80, 0x01);
|
|
|
|
writeReg8(0x94, 0x6b);
|
|
writeReg8(0x83, 0x00);
|
|
|
|
|
|
int cnt = 0;
|
|
while (readReg8(0x83) == 0x00) {
|
|
if (++cnt > 100) {
|
|
debugMod(NAME, "SPAD timeout");
|
|
return false;
|
|
}
|
|
}
|
|
writeReg8(0x83, 0x01);
|
|
tmp = readReg8(0x92);
|
|
|
|
*count = tmp & 0x7f;
|
|
*type_is_aperture = (tmp >> 7) & 0x01;
|
|
|
|
writeReg8(0x81, 0x00);
|
|
writeReg8(0xFF, 0x06);
|
|
writeReg8(0x83, readReg8(0x83) & ~0x04);
|
|
writeReg8(0xFF, 0x01);
|
|
writeReg8(0x00, 0x01);
|
|
|
|
writeReg8(0xFF, 0x00);
|
|
writeReg8(0x80, 0x00);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
// Get the measurement timing budget in microseconds
|
|
// based on VL53L0X_get_measurement_timing_budget_micro_seconds()
|
|
// in us
|
|
uint32_t getMeasurementTimingBudget(void) {
|
|
|
|
SequenceStepEnables enables;
|
|
SequenceStepTimeouts timeouts;
|
|
|
|
uint16_t const StartOverhead = 1910; // note that this is different than the value in set_
|
|
uint16_t const EndOverhead = 960;
|
|
uint16_t const MsrcOverhead = 660;
|
|
uint16_t const TccOverhead = 590;
|
|
uint16_t const DssOverhead = 690;
|
|
uint16_t const PreRangeOverhead = 660;
|
|
uint16_t const FinalRangeOverhead = 550;
|
|
|
|
// "Start and end overhead times always present"
|
|
uint32_t budget_us = StartOverhead + EndOverhead;
|
|
|
|
getSequenceStepEnables(&enables);
|
|
getSequenceStepTimeouts(&enables, &timeouts);
|
|
|
|
if (enables.tcc) {
|
|
budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead);
|
|
}
|
|
|
|
if (enables.dss) {
|
|
budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead);
|
|
} else if (enables.msrc) {
|
|
budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead);
|
|
}
|
|
|
|
if (enables.pre_range) {
|
|
budget_us += (timeouts.pre_range_us + PreRangeOverhead);
|
|
}
|
|
|
|
if (enables.final_range) {
|
|
budget_us += (timeouts.final_range_us + FinalRangeOverhead);
|
|
}
|
|
|
|
measurement_timing_budget_us = budget_us; // store for internal reuse
|
|
return budget_us;
|
|
|
|
}
|
|
|
|
// Set the measurement timing budget in microseconds, which is the time allowed
|
|
// for one measurement; the ST API and this library take care of splitting the
|
|
// timing budget among the sub-steps in the ranging sequence. A longer timing
|
|
// budget allows for more accurate measurements. Increasing the budget by a
|
|
// factor of N decreases the range measurement standard deviation by a factor of
|
|
// sqrt(N). Defaults to about 33 milliseconds; the minimum is 20 ms.
|
|
// based on VL53L0X_set_measurement_timing_budget_micro_seconds()
|
|
bool setMeasurementTimingBudget(uint32_t budget_us) {
|
|
|
|
SequenceStepEnables enables;
|
|
SequenceStepTimeouts timeouts;
|
|
|
|
uint16_t const StartOverhead = 1320; // note that this is different than the value in get_
|
|
uint16_t const EndOverhead = 960;
|
|
uint16_t const MsrcOverhead = 660;
|
|
uint16_t const TccOverhead = 590;
|
|
uint16_t const DssOverhead = 690;
|
|
uint16_t const PreRangeOverhead = 660;
|
|
uint16_t const FinalRangeOverhead = 550;
|
|
|
|
uint32_t const MinTimingBudget = 20000;
|
|
|
|
if (budget_us < MinTimingBudget) { return false; }
|
|
|
|
uint32_t used_budget_us = StartOverhead + EndOverhead;
|
|
|
|
getSequenceStepEnables(&enables);
|
|
getSequenceStepTimeouts(&enables, &timeouts);
|
|
|
|
if (enables.tcc) {
|
|
used_budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead);
|
|
}
|
|
|
|
if (enables.dss) {
|
|
used_budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead);
|
|
} else if (enables.msrc) {
|
|
used_budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead);
|
|
}
|
|
|
|
if (enables.pre_range) {
|
|
used_budget_us += (timeouts.pre_range_us + PreRangeOverhead);
|
|
}
|
|
|
|
if (enables.final_range) {
|
|
|
|
used_budget_us += FinalRangeOverhead;
|
|
|
|
// "Note that the final range timeout is determined by the timing
|
|
// budget and the sum of all other timeouts within the sequence.
|
|
// If there is no room for the final range timeout, then an error
|
|
// will be set. Otherwise the remaining time will be applied to
|
|
// the final range."
|
|
|
|
if (used_budget_us > budget_us) {
|
|
// "Requested timeout too big."
|
|
return false;
|
|
}
|
|
|
|
uint32_t final_range_timeout_us = budget_us - used_budget_us;
|
|
|
|
// set_sequence_step_timeout() begin
|
|
// (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE)
|
|
|
|
// "For the final range timeout, the pre-range timeout
|
|
// must be added. To do this both final and pre-range
|
|
// timeouts must be expressed in macro periods MClks
|
|
// because they have different vcsel periods."
|
|
|
|
uint16_t final_range_timeout_mclks = timeoutMicrosecondsToMclks(final_range_timeout_us, timeouts.final_range_vcsel_period_pclks);
|
|
|
|
if (enables.pre_range) {
|
|
final_range_timeout_mclks += timeouts.pre_range_mclks;
|
|
}
|
|
|
|
writeReg16(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI, encodeTimeout(final_range_timeout_mclks));
|
|
|
|
// set_sequence_step_timeout() end
|
|
measurement_timing_budget_us = budget_us; // store for internal reuse
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
// Get sequence step enables
|
|
// based on VL53L0X_GetSequenceStepEnables()
|
|
void getSequenceStepEnables(SequenceStepEnables* enables) {
|
|
|
|
uint8_t sequence_config = readReg8(SYSTEM_SEQUENCE_CONFIG);
|
|
enables->tcc = (sequence_config >> 4) & 0x1;
|
|
enables->dss = (sequence_config >> 3) & 0x1;
|
|
enables->msrc = (sequence_config >> 2) & 0x1;
|
|
enables->pre_range = (sequence_config >> 6) & 0x1;
|
|
enables->final_range = (sequence_config >> 7) & 0x1;
|
|
|
|
}
|
|
|
|
|
|
// Get sequence step timeouts
|
|
// based on get_sequence_step_timeout(),
|
|
// but gets all timeouts instead of just the requested one, and also stores
|
|
// intermediate values
|
|
void getSequenceStepTimeouts(SequenceStepEnables const* enables, SequenceStepTimeouts* timeouts) {
|
|
|
|
timeouts->pre_range_vcsel_period_pclks = getVcselPulsePeriod(VcselPeriodPreRange);
|
|
|
|
timeouts->msrc_dss_tcc_mclks = readReg8(MSRC_CONFIG_TIMEOUT_MACROP) + 1;
|
|
timeouts->msrc_dss_tcc_us =
|
|
timeoutMclksToMicroseconds(timeouts->msrc_dss_tcc_mclks, timeouts->pre_range_vcsel_period_pclks);
|
|
|
|
timeouts->pre_range_mclks =
|
|
decodeTimeout(readReg16(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI));
|
|
timeouts->pre_range_us =
|
|
timeoutMclksToMicroseconds(timeouts->pre_range_mclks, timeouts->pre_range_vcsel_period_pclks);
|
|
|
|
timeouts->final_range_vcsel_period_pclks = getVcselPulsePeriod(VcselPeriodFinalRange);
|
|
|
|
timeouts->final_range_mclks =
|
|
decodeTimeout(readReg16(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI));
|
|
|
|
if (enables->pre_range) {
|
|
timeouts->final_range_mclks -= timeouts->pre_range_mclks;
|
|
}
|
|
|
|
timeouts->final_range_us = timeoutMclksToMicroseconds(timeouts->final_range_mclks, timeouts->final_range_vcsel_period_pclks);
|
|
|
|
debugMod2(NAME, "current timing is pre: %d, final: %d", timeouts->pre_range_vcsel_period_pclks, timeouts->final_range_vcsel_period_pclks);
|
|
|
|
}
|
|
|
|
// based on VL53L0X_perform_single_ref_calibration()
|
|
bool performSingleRefCalibration(uint8_t vhv_init_byte) {
|
|
|
|
writeReg8(SYSRANGE_START, 0x01 | vhv_init_byte); // VL53L0X_REG_SYSRANGE_MODE_START_STOP
|
|
|
|
int cnt = 0;
|
|
while ((readReg8(RESULT_INTERRUPT_STATUS) & 0x07) == 0) {
|
|
if (++cnt > 100) {
|
|
debugMod(NAME, "calibration timeout");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
writeReg8(SYSTEM_INTERRUPT_CLEAR, 0x01);
|
|
writeReg8(SYSRANGE_START, 0x00);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
// Convert sequence step timeout from MCLKs to microseconds with given VCSEL period in PCLKs
|
|
// based on VL53L0X_calc_timeout_us()
|
|
uint32_t timeoutMclksToMicroseconds(uint16_t timeout_period_mclks, uint8_t vcsel_period_pclks) {
|
|
uint32_t macro_period_ns = calcMacroPeriod(vcsel_period_pclks);
|
|
return ((timeout_period_mclks * macro_period_ns) + (macro_period_ns / 2)) / 1000;
|
|
}
|
|
|
|
// Convert sequence step timeout from microseconds to MCLKs with given VCSEL period in PCLKs
|
|
// based on VL53L0X_calc_timeout_mclks()
|
|
uint32_t timeoutMicrosecondsToMclks(uint32_t timeout_period_us, uint8_t vcsel_period_pclks) {
|
|
uint32_t macro_period_ns = calcMacroPeriod(vcsel_period_pclks);
|
|
return (((timeout_period_us * 1000) + (macro_period_ns / 2)) / macro_period_ns);
|
|
}
|
|
|
|
// Get the VCSEL pulse period in PCLKs for the given period type.
|
|
// based on VL53L0X_get_vcsel_pulse_period()
|
|
uint8_t getVcselPulsePeriod(vcselPeriodType type) {
|
|
if (type == VcselPeriodPreRange) {
|
|
return decodeVcselPeriod(readReg8(PRE_RANGE_CONFIG_VCSEL_PERIOD));
|
|
} else if (type == VcselPeriodFinalRange) {
|
|
return decodeVcselPeriod(readReg8(FINAL_RANGE_CONFIG_VCSEL_PERIOD));
|
|
} else {
|
|
return 255;
|
|
}
|
|
}
|
|
|
|
// Decode sequence step timeout in MCLKs from register value
|
|
// based on VL53L0X_decode_timeout()
|
|
// Note: the original function returned a uint32_t, but the return value is
|
|
// always stored in a uint16_t.
|
|
uint16_t decodeTimeout(uint16_t reg_val) {
|
|
// format: "(LSByte * 2^MSByte) + 1"
|
|
return (uint16_t)((reg_val & 0x00FF) << (uint16_t)((reg_val & 0xFF00) >> 8)) + 1;
|
|
}
|
|
|
|
// Encode sequence step timeout register value from timeout in MCLKs
|
|
// based on VL53L0X_encode_timeout()
|
|
// Note: the original function took a uint16_t, but the argument passed to it
|
|
// is always a uint16_t.
|
|
uint16_t encodeTimeout(uint16_t timeout_mclks) {
|
|
// format: "(LSByte * 2^MSByte) + 1"
|
|
|
|
uint32_t ls_byte = 0;
|
|
uint16_t ms_byte = 0;
|
|
|
|
if (timeout_mclks > 0) {
|
|
ls_byte = timeout_mclks - 1;
|
|
|
|
while ((ls_byte & 0xFFFFFF00) > 0) {
|
|
ls_byte >>= 1;
|
|
ms_byte++;
|
|
}
|
|
|
|
return (ms_byte << 8) | (ls_byte & 0xFF);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Set the VCSEL (vertical cavity surface emitting laser) pulse period for the
|
|
// given period type (pre-range or final range) to the given value in PCLKs.
|
|
// Longer periods seem to increase the potential range of the sensor.
|
|
// Valid values are (even numbers only):
|
|
// pre: 12 to 18 (initialized default: 14)
|
|
// final: 8 to 14 (initialized default: 10)
|
|
// based on VL53L0X_set_vcsel_pulse_period()
|
|
bool setVcselPulsePeriod(vcselPeriodType type, uint8_t period_pclks) {
|
|
|
|
uint8_t vcsel_period_reg = encodeVcselPeriod(period_pclks);
|
|
|
|
SequenceStepEnables enables;
|
|
SequenceStepTimeouts timeouts;
|
|
|
|
getSequenceStepEnables(&enables);
|
|
getSequenceStepTimeouts(&enables, &timeouts);
|
|
|
|
// "Apply specific settings for the requested clock period"
|
|
// "Re-calculate and apply timeouts, in macro periods"
|
|
|
|
// "When the VCSEL period for the pre or final range is changed,
|
|
// the corresponding timeout must be read from the device using
|
|
// the current VCSEL period, then the new VCSEL period can be
|
|
// applied. The timeout then must be written back to the device
|
|
// using the new VCSEL period.
|
|
//
|
|
// For the MSRC timeout, the same applies - this timeout being
|
|
// dependant on the pre-range vcsel period."
|
|
|
|
if (type == VcselPeriodPreRange) {
|
|
|
|
// "Set phase check limits"
|
|
switch (period_pclks) {
|
|
case 12:
|
|
writeReg8(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x18);
|
|
break;
|
|
|
|
case 14:
|
|
writeReg8(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x30);
|
|
break;
|
|
|
|
case 16:
|
|
writeReg8(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x40);
|
|
break;
|
|
|
|
case 18:
|
|
writeReg8(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x50);
|
|
break;
|
|
|
|
default:
|
|
// invalid period
|
|
return false;
|
|
}
|
|
|
|
writeReg8(PRE_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
|
|
|
|
// apply new VCSEL period
|
|
writeReg8(PRE_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg);
|
|
|
|
// update timeouts
|
|
|
|
// set_sequence_step_timeout() begin
|
|
// (SequenceStepId == VL53L0X_SEQUENCESTEP_PRE_RANGE)
|
|
|
|
uint16_t new_pre_range_timeout_mclks = timeoutMicrosecondsToMclks(timeouts.pre_range_us, period_pclks);
|
|
|
|
writeReg16(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI, encodeTimeout(new_pre_range_timeout_mclks));
|
|
|
|
// set_sequence_step_timeout() end
|
|
|
|
// set_sequence_step_timeout() begin
|
|
// (SequenceStepId == VL53L0X_SEQUENCESTEP_MSRC)
|
|
|
|
uint16_t new_msrc_timeout_mclks = timeoutMicrosecondsToMclks(timeouts.msrc_dss_tcc_us, period_pclks);
|
|
|
|
writeReg8(MSRC_CONFIG_TIMEOUT_MACROP, (new_msrc_timeout_mclks > 256) ? 255 : (new_msrc_timeout_mclks - 1));
|
|
|
|
// set_sequence_step_timeout() end
|
|
} else if (type == VcselPeriodFinalRange) {
|
|
|
|
switch (period_pclks) {
|
|
case 8:
|
|
writeReg8(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x10);
|
|
writeReg8(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
|
|
writeReg8(GLOBAL_CONFIG_VCSEL_WIDTH, 0x02);
|
|
writeReg8(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C);
|
|
writeReg8(0xFF, 0x01);
|
|
writeReg8(ALGO_PHASECAL_LIM, 0x30);
|
|
writeReg8(0xFF, 0x00);
|
|
break;
|
|
|
|
case 10:
|
|
writeReg8(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x28);
|
|
writeReg8(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
|
|
writeReg8(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
|
|
writeReg8(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09);
|
|
writeReg8(0xFF, 0x01);
|
|
writeReg8(ALGO_PHASECAL_LIM, 0x20);
|
|
writeReg8(0xFF, 0x00);
|
|
break;
|
|
|
|
case 12:
|
|
writeReg8(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x38);
|
|
writeReg8(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
|
|
writeReg8(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
|
|
writeReg8(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08);
|
|
writeReg8(0xFF, 0x01);
|
|
writeReg8(ALGO_PHASECAL_LIM, 0x20);
|
|
writeReg8(0xFF, 0x00);
|
|
break;
|
|
|
|
case 14:
|
|
writeReg8(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x48);
|
|
writeReg8(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
|
|
writeReg8(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
|
|
writeReg8(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07);
|
|
writeReg8(0xFF, 0x01);
|
|
writeReg8(ALGO_PHASECAL_LIM, 0x20);
|
|
writeReg8(0xFF, 0x00);
|
|
break;
|
|
|
|
default:
|
|
// invalid period
|
|
return false;
|
|
}
|
|
|
|
// apply new VCSEL period
|
|
writeReg8(FINAL_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg);
|
|
|
|
// update timeouts
|
|
|
|
// set_sequence_step_timeout() begin
|
|
// (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE)
|
|
|
|
// "For the final range timeout, the pre-range timeout
|
|
// must be added. To do this both final and pre-range
|
|
// timeouts must be expressed in macro periods MClks
|
|
// because they have different vcsel periods."
|
|
|
|
uint16_t new_final_range_timeout_mclks = timeoutMicrosecondsToMclks(timeouts.final_range_us, period_pclks);
|
|
|
|
if (enables.pre_range) {
|
|
new_final_range_timeout_mclks += timeouts.pre_range_mclks;
|
|
}
|
|
|
|
writeReg16(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI, encodeTimeout(new_final_range_timeout_mclks));
|
|
|
|
// set_sequence_step_timeout end
|
|
|
|
} else {
|
|
// invalid type
|
|
return false;
|
|
}
|
|
|
|
// "Finally, the timing budget must be re-applied"
|
|
|
|
setMeasurementTimingBudget(measurement_timing_budget_us);
|
|
|
|
// "Perform the phase calibration. This is needed after changing on vcsel period."
|
|
// VL53L0X_perform_phase_calibration() begin
|
|
|
|
uint8_t sequence_config = readReg8(SYSTEM_SEQUENCE_CONFIG);
|
|
writeReg8(SYSTEM_SEQUENCE_CONFIG, 0x02);
|
|
performSingleRefCalibration(0x0);
|
|
writeReg8(SYSTEM_SEQUENCE_CONFIG, sequence_config);
|
|
|
|
// VL53L0X_perform_phase_calibration() end
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
uint8_t readReg8(const uint8_t reg) {
|
|
|
|
beginReadRegister(reg);
|
|
|
|
uint8_t res = 0;
|
|
i2c::readBytes(&res, 1);
|
|
i2c::stop();
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
uint16_t readReg16(const uint8_t reg) {
|
|
|
|
beginReadRegister(reg);
|
|
|
|
uint8_t buf[2];
|
|
i2c::readBytes(buf, 2);
|
|
i2c::stop();
|
|
|
|
uint16_t res = buf[0];
|
|
res <<= 8;
|
|
res |= buf[1];
|
|
return res;
|
|
|
|
}
|
|
|
|
void readRegN(const uint8_t reg, uint8_t* dst, const size_t len) {
|
|
|
|
beginReadRegister(reg);
|
|
|
|
i2c::readBytes(dst, len);
|
|
i2c::stop();
|
|
|
|
}
|
|
|
|
|
|
|
|
/** internal helper method. begin writing to the device */
|
|
void beginWriteRegister(const uint8_t reg) {
|
|
|
|
bool ok;
|
|
|
|
// select device for writing
|
|
ok = i2c::startWrite(ADDR);
|
|
if (!ok) {debugMod(NAME, "failed startWrite()");}
|
|
|
|
// select register to write to
|
|
ok = i2c::writeByteAndCheck(reg);
|
|
if (!ok) {debugMod1(NAME, "failed to select register %d", reg);}
|
|
|
|
}
|
|
|
|
/** internal helper method. begin reading from the device */
|
|
void beginReadRegister(const uint8_t reg) {
|
|
|
|
bool ok;
|
|
|
|
// select device for writing
|
|
ok = i2c::startWrite(ADDR);
|
|
if (!ok) {debugMod(NAME, "failed startWrite()");}
|
|
|
|
// select register to read from
|
|
ok = i2c::writeByteAndCheck(reg);
|
|
if (!ok) {debugMod1(NAME, "failed to select register %d", reg);}
|
|
i2c::stop();
|
|
|
|
// re-address in read mode
|
|
ok = i2c::startRead(ADDR);
|
|
if (!ok) {debugMod(NAME, "failed startRead()");}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void writeReg8(const uint8_t reg, const uint8_t val) {
|
|
|
|
beginWriteRegister(reg);
|
|
bool ok = i2c::writeByteAndCheck(val);
|
|
if (!ok) {debugMod(NAME, "failed to write byte");}
|
|
i2c::stop();
|
|
|
|
}
|
|
|
|
void writeReg16(const uint8_t reg, const uint16_t val) {
|
|
|
|
beginWriteRegister(reg);
|
|
bool ok;
|
|
ok = i2c::writeByteAndCheck(val >> 8);
|
|
if (!ok) {debugMod(NAME, "failed to write 1st byte");}
|
|
ok = i2c::writeByteAndCheck(val >> 0);
|
|
if (!ok) {debugMod(NAME, "failed to write 2nd byte");}
|
|
i2c::stop();
|
|
|
|
}
|
|
|
|
void writeReg32(const uint8_t reg, const uint32_t val) {
|
|
|
|
beginWriteRegister(reg);
|
|
bool ok;
|
|
ok = i2c::writeByteAndCheck(val >> 24);
|
|
if (!ok) {debugMod(NAME, "failed to write 1st byte");}
|
|
ok = i2c::writeByteAndCheck(val >> 16);
|
|
if (!ok) {debugMod(NAME, "failed to write 2nd byte");}
|
|
ok = i2c::writeByteAndCheck(val >> 8);
|
|
if (!ok) {debugMod(NAME, "failed to write 3rd byte");}
|
|
ok = i2c::writeByteAndCheck(val >> 0);
|
|
if (!ok) {debugMod(NAME, "failed to write 4th byte");}
|
|
i2c::stop();
|
|
|
|
}
|
|
|
|
void writeRegN(const uint8_t reg, const uint8_t* data, const size_t len) {
|
|
|
|
beginWriteRegister(reg);
|
|
|
|
for (size_t i = 0; i < len; ++i) {
|
|
bool ok = i2c::writeByteAndCheck(data[i]);
|
|
if (!ok) {debugMod(NAME, "failed to write byte"); break;}
|
|
}
|
|
i2c::stop();
|
|
|
|
}
|
|
|
|
|
|
public:
|
|
|
|
|
|
void initOnce() {
|
|
if (inited) {return;}
|
|
init();
|
|
inited = true;
|
|
}
|
|
|
|
|
|
bool isPresent() {
|
|
return i2c::query(ADDR);
|
|
}
|
|
|
|
/** check whether the sensor responds with some known values */
|
|
bool check() {
|
|
const uint8_t v1 = readReg8(0xC0); // should be 0xEE
|
|
const uint8_t v2 = readReg8(0xC1); // should be 0xAA
|
|
const uint8_t v3 = readReg8(0xC2); // should be 0x10
|
|
const bool ok = (v1 == 0xEE) && (v2 == 0xAA) && (v3 == 0x10);
|
|
os_printf("res. %d %d %d\n\n", v1, v2, v3);
|
|
return ok;
|
|
}
|
|
|
|
// Start continuous ranging measurements. If period_ms (optional) is 0 or not
|
|
// given, continuous back-to-back mode is used (the sensor takes measurements as
|
|
// often as possible); otherwise, continuous timed mode is used, with the given
|
|
// inter-measurement period in milliseconds determining how often the sensor
|
|
// takes a measurement.
|
|
// based on VL53L0X_StartMeasurement()
|
|
void startContinuous(uint32_t period_ms) {
|
|
|
|
writeReg8(0x80, 0x01);
|
|
writeReg8(0xFF, 0x01);
|
|
writeReg8(0x00, 0x00);
|
|
writeReg8(0x91, stop_variable);
|
|
writeReg8(0x00, 0x01);
|
|
writeReg8(0xFF, 0x00);
|
|
writeReg8(0x80, 0x00);
|
|
|
|
if (period_ms != 0) {
|
|
|
|
// continuous timed mode
|
|
|
|
// VL53L0X_SetInterMeasurementPeriodMilliSeconds() begin
|
|
|
|
uint16_t osc_calibrate_val = readReg16(OSC_CALIBRATE_VAL);
|
|
|
|
if (osc_calibrate_val != 0) {
|
|
period_ms *= osc_calibrate_val;
|
|
}
|
|
|
|
writeReg32(SYSTEM_INTERMEASUREMENT_PERIOD, period_ms);
|
|
|
|
// VL53L0X_SetInterMeasurementPeriodMilliSeconds() end
|
|
|
|
writeReg8(SYSRANGE_START, 0x04); // VL53L0X_REG_SYSRANGE_MODE_TIMED
|
|
|
|
} else {
|
|
|
|
// continuous back-to-back mode
|
|
writeReg8(SYSRANGE_START, 0x02); // VL53L0X_REG_SYSRANGE_MODE_BACKTOBACK
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Stop continuous measurements
|
|
// based on VL53L0X_StopMeasurement()
|
|
void stopContinuous(void) {
|
|
|
|
writeReg8(SYSRANGE_START, 0x01); // VL53L0X_REG_SYSRANGE_MODE_SINGLESHOT
|
|
|
|
writeReg8(0xFF, 0x01);
|
|
writeReg8(0x00, 0x00);
|
|
writeReg8(0x91, 0x00);
|
|
writeReg8(0x00, 0x01);
|
|
writeReg8(0xFF, 0x00);
|
|
|
|
}
|
|
|
|
// Returns a range reading in millimeters when continuous mode is active
|
|
// (readRangeSingleMillimeters() also calls this function after starting a
|
|
// single-shot range measurement)
|
|
uint16_t readRangeContinuousMillimeters(void) {
|
|
|
|
int cnt = 0;
|
|
while ((readReg8(RESULT_INTERRUPT_STATUS) & 0x07) == 0) {
|
|
if (++cnt > 100) {
|
|
debugMod(NAME, "measurement timeout!");
|
|
return 65535;
|
|
}
|
|
}
|
|
|
|
// assumptions: Linearity Corrective Gain is 1000 (default);
|
|
// fractional ranging is not enabled
|
|
uint16_t range = readReg16(RESULT_RANGE_STATUS + 10);
|
|
|
|
writeReg8(SYSTEM_INTERRUPT_CLEAR, 0x01);
|
|
|
|
return range;
|
|
|
|
}
|
|
|
|
|
|
|
|
};
|
|
|
|
#endif // VL53L0X
|