Files
ESP8266lib/io/teensy/I2S2.h
2021-02-27 11:29:58 +01:00

313 lines
9.7 KiB
C++

#pragma once
// https://github.com/Jean-MarcHarvengt/VGA_t4
// https://forum.pjrc.com/threads/63243-Writing-Directly-to-SGTL5000-CODEC-DACs
// https://community.nxp.com/t5/Kinetis-Microcontrollers/is-there-any-demo-code-for-using-I2S/m-p/196195/highlight/true
// https://github.com/PaulStoffregen/Audio/blob/99b9472afd24bea13efc799742c0ea432ef2303a/output_i2s.cpp
#include "../../Debug.h"
#define I2S2_USE_DMA
#ifdef I2S2_USE_DMA
#include <DMAChannel.h>
#endif
// the buffer has a size of X samples,
// and we receive an interrupt whenever ONE HALF was transmitted
// 1152 = MP3 decode size, *2 (stereo), *2 (2 buffer halfs)
static constexpr const uint32_t I2S2_BUFFER_SAMPLES = 1152*2*2;
#include "I2SBase.h"
class I2S2 {
private:
static constexpr const char* NAME = "I2S2";
/** the actual PCM data buffer */
static DMAMEM __attribute__((aligned(32))) int16_t buffer[I2S2_BUFFER_SAMPLES];
/** helper class to map one half of above buffer */
struct BufferHalf {
int16_t* mem;
volatile uint16_t samplesUsed = 0;
uint16_t samplesFree() const {return I2S2_BUFFER_SAMPLES/2 - samplesUsed;}
BufferHalf(int16_t* mem) : mem(mem) {}
bool isFilled() const {return samplesFree() == 0;}
void dropCache() {arm_dcache_flush_delete(mem, I2S2_BUFFER_SAMPLES/2*sizeof(int16_t));}
};
struct State {
#ifdef I2S2_USE_DMA
DMAChannel dma;
volatile uint8_t transmittingHalf = 0;
BufferHalf bufferHalf[2] = {
BufferHalf(&buffer[0]),
BufferHalf(&buffer[I2S2_BUFFER_SAMPLES/2]),
};
/** the current half was transmitted, switch to the next one */
void halfTransmitted() {
bufferHalf[transmittingHalf].samplesUsed = 0;
//memset(bufferHalf[transmittingHalf].mem, 0, I2S2_BUFFER_SAMPLES/2*sizeof(int16_t));
transmittingHalf = (transmittingHalf + 1) % 2;
bufferHalf[transmittingHalf].dropCache();
}
/** the BufferHalf we are currently filling when adding new data */
BufferHalf& fillingHalf() {
return bufferHalf[(transmittingHalf+1)%2];
}
#else
// TODO
#endif
};
static State state;
public:
/** start the i2s transmission with the given values */
static void setup(uint8_t channels, uint32_t sampleRate_hz) {
Log::addInfo(NAME, "start(%d, %d)", channels, sampleRate_hz);
// zero out the audio data buffer
clearBuffer();
// configure the I2S unit
config_sai2(sampleRate_hz);
#ifdef I2S2_USE_DMA
state.dma.begin(true); // Allocate the DMA channel first
state.dma.TCD->SADDR = buffer; // source address
state.dma.TCD->SOFF = 2; // source buffer address increment per transfer in bytes
state.dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); // specifies 16 bit source and destination
state.dma.TCD->NBYTES_MLNO = 2; // bytes to transfer for each service request///////////////////////////////////////////////////////////////////
state.dma.TCD->SLAST = -sizeof(buffer); // last source address adjustment
state.dma.TCD->DOFF = 0; // increments at destination
state.dma.TCD->CITER_ELINKNO = sizeof(buffer) / 2;
state.dma.TCD->DLASTSGA = 0; // destination address offset
state.dma.TCD->BITER_ELINKNO = sizeof(buffer) / 2;
state.dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; // enables interrupt when transfers half complete. SET TO 0 to disable DMA interrupts
state.dma.TCD->DADDR = (void *)((uint32_t)&I2S2_TDR0 + 2); // I2S2 register DMA writes to
state.dma.triggerAtHardwareEvent(DMAMUX_SOURCE_SAI2_TX); // i2s channel that will trigger the DMA transfer when ready for data
state.dma.enable();
state.dma.attachInterrupt(I2S2::isrDMA);
Log::addInfo(NAME, "DMA configured");
#else
attachInterruptVector(IRQ_SAI2, isrAudio);
NVIC_ENABLE_IRQ(IRQ_SAI2);
NVIC_SET_PRIORITY(IRQ_SAI2, 127);
I2S2_TCSR |= 1<<8; // start generating TX FIFO interrupts
#endif
}
/** zero-out the audio buffer */
static void clearBuffer() {
memset(buffer, 0, sizeof(buffer));
state.bufferHalf[0].samplesUsed = 0;
state.bufferHalf[1].samplesUsed = 0;
}
/** block until the given number of samples were added to the internal buffer */
static void addBlocking(const int16_t* pcm, uint16_t numSamples) {
while(numSamples) {
const uint32_t samplesAdded = addNonBlocking(pcm, numSamples);
numSamples -= samplesAdded;
pcm += samplesAdded;
}
}
/** add the given number of samples to the internal buffer, returns the number of actually added samples, dependent on how much space there was */
static uint16_t addNonBlocking(const int16_t* pcm, uint16_t numSamples) {
#ifdef I2S2_USE_DMA
BufferHalf& bh = state.fillingHalf();
const uint16_t addable = min(numSamples, bh.samplesFree());
uint8_t* dst = (uint8_t*) (&bh.mem[bh.samplesUsed]);
uint16_t numBytes = addable * sizeof(int16_t);
memcpy(dst, pcm, numBytes);
bh.samplesUsed += addable;
return addable;
#else
// TODO, NOT YET IMPLEMENTED
if (freeEntries < SAMPLES_PER_BUFFER) {return false;}
//int16_t* dst = &audioBuffer[bufHead];
//memcpy(dst, samples, SAMPLES_PER_BUFFER*sizeof(int16_t));
//bufHead = (bufHead + SAMPLES_PER_BUFFER) % NUM_ENTRIES;
//curBuffer = (curBuffer + 1) % NUM_BUFFERS;
for (uint16_t i = 0; i < SAMPLES_PER_BUFFER; ++i) {
audioBuffer[bufHead] = samples[i];
bufHead = (bufHead + 1) % NUM_ENTRIES;
}
freeEntries -= SAMPLES_PER_BUFFER;
arm_dcache_flush_delete(audioBuffer, NUM_ENTRIES*sizeof(int16_t));
return true;
#endif
}
private:
#ifdef I2S2_USE_DMA
FASTRUN static void isrDMA() {
// one buffer half processed -> next
state.dma.clearInterrupt();
state.halfTransmitted();
}
#else
// interrupt service routine
static void isrAudio() {
// TODO, not yet implemented
static constexpr volatile uint16_t* txReg = (uint16_t *)((uint32_t)&I2S2_TDR0 + 2);
//static constexpr uint16_t* txReg = (uint16_t *)((uint32_t)&I2S2_TDR0 );
//if (CHANNELS == 2) {
const uint16_t sample1 = audioBuffer[bufTail];
//*txReg = sample1;
bufTail = (bufTail + 1) & (NUM_ENTRIES-1);
if (freeEntries < NUM_ENTRIES) {++freeEntries;}
*txReg = sample1;
//}
}
#endif
private:
static void config_sai2(uint32_t sampleRate_hz) {
CCM_CCGR5 |= CCM_CCGR5_SAI2(CCM_CCGR_ON);
double fs = sampleRate_hz;
// PLL between 27*24 = 648MHz und 54*24=1296MHz
int n1 = 4; //SAI prescaler 4 => (n1*n2) = multiple of 4
int n2 = 1 + (24000000 * 27) / (fs * 256 * n1);
double C = (fs * 256 * n1 * n2) / 24000000;
int c0 = C;
int c2 = 10000;
int c1 = C * c2 - (c0 * c2);
setAudioClock(c0, c1, c2, true);
// clear SAI2_CLK register locations
CCM_CSCMR1 = (CCM_CSCMR1 & ~(CCM_CSCMR1_SAI2_CLK_SEL_MASK))
| CCM_CSCMR1_SAI2_CLK_SEL(2); // &0x03 // (0,1,2): PLL3PFD0, PLL5, PLL4
//n1 = n1 / 2; //Double Speed for TDM
CCM_CS2CDR = (CCM_CS2CDR & ~(CCM_CS2CDR_SAI2_CLK_PRED_MASK | CCM_CS2CDR_SAI2_CLK_PODF_MASK))
| CCM_CS2CDR_SAI2_CLK_PRED(n1 - 1)
| CCM_CS2CDR_SAI2_CLK_PODF(n2 - 1);
// kazu: OK WITHOUT??
IOMUXC_GPR_GPR1 = (IOMUXC_GPR_GPR1 & ~(IOMUXC_GPR_GPR1_SAI2_MCLK3_SEL_MASK)) | (IOMUXC_GPR_GPR1_SAI2_MCLK_DIR | IOMUXC_GPR_GPR1_SAI2_MCLK3_SEL(0)); //Select MCLK
// configure transmitter
const int rsync = 0;
const int tsync = 1;
uint16_t by = 32; // ??
// configure transmitter
I2S2_TMR = 0;
I2S2_TCR1 = I2S_TCR1_RFW(1);
I2S2_TCR2 = I2S_TCR2_SYNC(tsync) | I2S_TCR2_BCP | (I2S_TCR2_BCD | I2S_TCR2_DIV((1)) | I2S_TCR2_MSEL(1)); // sync=0; tx is async;
I2S2_TCR3 = I2S_TCR3_TCE;
I2S2_TCR4 = I2S_TCR4_FRSZ((2-1)) | I2S_TCR4_SYWD((by-1)) | I2S_TCR4_MF | I2S_TCR4_FSD | I2S_TCR4_FSE | I2S_TCR4_FSP;
I2S2_TCR5 = I2S_TCR5_WNW((by-1)) | I2S_TCR5_W0W((by-1)) | I2S_TCR5_FBT((by-1)); // page 1995
I2S2_RMR = 0;
I2S2_RCR1 = I2S_RCR1_RFW(1);
I2S2_RCR2 = I2S_RCR2_SYNC(rsync) | I2S_RCR2_BCP | (I2S_RCR2_BCD | I2S_RCR2_DIV((1)) | I2S_RCR2_MSEL(1)); // sync=0; rx is async;
I2S2_RCR3 = I2S_RCR3_RCE;
I2S2_RCR4 = I2S_RCR4_FRSZ((2-1)) | I2S_RCR4_SYWD((by-1)) | I2S_RCR4_MF | I2S_RCR4_FSE | I2S_RCR4_FSP | I2S_RCR4_FSD;
I2S2_RCR5 = I2S_RCR5_WNW((by-1)) | I2S_RCR5_W0W((by-1)) | I2S_RCR5_FBT((by-1));
// configure pins (2,3,4) to their I2S functionality
CORE_PIN4_CONFIG = 2; // RX_BCLK
CORE_PIN3_CONFIG = 2; // RX_SYNC (left/right)
CORE_PIN2_CONFIG = 2; // TX_DATA0
I2S2_RCSR |= I2S_RCSR_RE | I2S_RCSR_BCE;
#ifdef I2S2_USE_DMA
I2S2_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE; // | I2S_TCSR_FR ???
#else
I2S2_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE;
#endif
}
FLASHMEM static void setAudioClock(int nfact, int32_t nmult, uint32_t ndiv, bool force) {// sets PLL4
if (!force && (CCM_ANALOG_PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_ENABLE)) return;
CCM_ANALOG_PLL_AUDIO = CCM_ANALOG_PLL_AUDIO_BYPASS | CCM_ANALOG_PLL_AUDIO_ENABLE
| CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2) // 2: 1/4; 1: 1/2; 0: 1/1
| CCM_ANALOG_PLL_AUDIO_DIV_SELECT(nfact);
CCM_ANALOG_PLL_AUDIO_NUM = nmult & CCM_ANALOG_PLL_AUDIO_NUM_MASK;
CCM_ANALOG_PLL_AUDIO_DENOM = ndiv & CCM_ANALOG_PLL_AUDIO_DENOM_MASK;
CCM_ANALOG_PLL_AUDIO &= ~CCM_ANALOG_PLL_AUDIO_POWERDOWN;//Switch on PLL
while (!(CCM_ANALOG_PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_LOCK)) {}; //Wait for pll-lock
const int div_post_pll = 1; // other values: 2,4
CCM_ANALOG_MISC2 &= ~(CCM_ANALOG_MISC2_DIV_MSB | CCM_ANALOG_MISC2_DIV_LSB);
if(div_post_pll>1) CCM_ANALOG_MISC2 |= CCM_ANALOG_MISC2_DIV_LSB;
if(div_post_pll>3) CCM_ANALOG_MISC2 |= CCM_ANALOG_MISC2_DIV_MSB;
CCM_ANALOG_PLL_AUDIO &= ~CCM_ANALOG_PLL_AUDIO_BYPASS;//Disable Bypass
}
};
// init static class members
#ifdef I2S2_IMPLEMENTATION
DMAMEM __attribute__((aligned(32))) int16_t I2S2::buffer[I2S2_BUFFER_SAMPLES];
I2S2::State I2S2::state;
#endif