Files
ESP8266lib/ext/led/WS2812B.h
2022-07-17 14:47:21 +02:00

649 lines
15 KiB
C++

#ifndef WS2812B_H
#define WS2812B_H
#include "../../data/Color.h"
#include "../../Platforms.h"
#include "../../Debug.h"
#include "../../io/GPIO.h"
#include <xtensa/xtruntime.h>
#if IS_ESP8266
// https://github.com/FastLED/FastLED/tree/master/src/platforms/esp/8266
#include "../../io/GPIO.h"
template <int numLEDs> class WS2812B {
static constexpr const char* NAME = "WS2812B";
#define LED_SET_PIN_TO_OUTPUT MyGPIO::setOutput(5) //GPIO5_OUTPUT_SET
#define LED_SET_PIN_H MyGPIO::set(5) //GPIO5_H
#define LED_SET_PIN_L MyGPIO::clear(5) //GPIO5_L
//#define NS_PER_TICK ( (1000ul*1000ul*1000ul) / (80ul*1000ul*1000ul) )
/** color-value for each attached LED */
Color colors[numLEDs];
/** enable/disable each led */
bool enabled[numLEDs] = {true};
public:
/** ctor */
WS2812B() {
init();
}
void init() {
LED_SET_PIN_TO_OUTPUT;
Log::addInfo(NAME, "init with %d leds", numLEDs);
}
/** set the color for the given LED */
void setColor(const uint8_t idx, const Color rgb) {
colors[idx] = rgb;
}
/** set the color for all LEDs */
void setColor(const Color rgb) {
for (int idx = 0; idx < numLEDs; ++idx) {
colors[idx] = rgb;
}
}
/** enable/disable the given LED */
void setEnabled(const uint8_t idx, const bool en) {
enabled[idx] = en;
}
/** enable/disable all LEDs */
void setEnabled(const bool en) {
for (int idx = 0; idx < numLEDs; ++idx) {
enabled[idx] = en;
}
}
/** is the given LED enabled? */
bool isEnabled(const uint8_t idx) const {
return enabled[idx];
}
Color& getColor(const uint8_t idx) {
return colors[idx];
}
/** flush configured changes */
IRAM_ATTR void flush() {
//LED_SET_PIN_TO_OUTPUT;
//ets_intr_lock();
//taskENTER_CRITICAL();
//taskDISABLE_INTERRUPTS();
//const uint32_t saved = XTOS_DISABLE_ALL_INTERRUPTS;
vPortETSIntrLock();
// process each LED
for (int i = 0; i < numLEDs; ++i) {
// send each LEDs 24-bit GRB data
if (enabled[i]) {
const Color rgb = colors[i];
sendByte(rgb.g);
sendByte(rgb.r);
sendByte(rgb.b);
} else {
sendByte(0);
sendByte(0);
sendByte(0);
}
}
//ets_intr_unlock();
//taskEXIT_CRITICAL();
//XTOS_RESTORE_INTLEVEL(saved);
vPortETSIntrUnlock();
//taskENABLE_INTERRUPTS();
reset();
}
/** flush configured changes, including global brightness */
IRAM_ATTR void flushBrightness(const uint8_t brightness) {
//LED_SET_PIN_TO_OUTPUT;
//ets_intr_lock();
//taskENTER_CRITICAL();
taskDISABLE_INTERRUPTS();
//const uint32_t saved = XTOS_DISABLE_ALL_INTERRUPTS;
//vPortETSIntrLock();
// process each LED
for (int i = 0; i < numLEDs; ++i) {
// send each LEDs 24-bit GRB data
if (enabled[i]) {
const Color rgb = colors[i].brightness(brightness);
sendByte(rgb.g);
sendByte(rgb.r);
sendByte(rgb.b);
} else {
sendByte(0);
sendByte(0);
sendByte(0);
}
}
//ets_intr_unlock();
taskENABLE_INTERRUPTS();
//taskEXIT_CRITICAL();
//XTOS_RESTORE_INTLEVEL(saved);
//vPortETSIntrUnlock();
reset();
}
private:
IRAM_ATTR void sendByte(uint8_t b) {
//if (b & 0b10000000) {send1();} else {send0();}
//if (b & 0b01000000) {send1();} else {send0();}
//if (b & 0b00100000) {send1();} else {send0();}
//if (b & 0b00010000) {send1();} else {send0();}
//if (b & 0b00001000) {send1();} else {send0();}
//if (b & 0b00000100) {send1();} else {send0();}
//if (b & 0b00000010) {send1();} else {send0();}
//if (b & 0b00000001) {send1();} else {send0();}
for (uint8_t i = 0; i < 8; ++i) {
if (b & 0b10000000) {send1();} else {send0();}
b <<= 1;
}
}
// @80 MHz one instruction = 12.5ns
// @160 MHz one instruction = 6.25ns
__attribute__((always_inline)) void send1() { // 800ns high, 450ns low
LED_SET_PIN_H;
delayL();
LED_SET_PIN_L;
delayS();
//const uint32_t tmp = soc_get_ccount();
//LED_SET_PIN_H;
//while(soc_get_ccount() - tmp < 144) {}
//LED_SET_PIN_L;
//while(soc_get_ccount() - tmp < 192-24) {}
}
__attribute__((always_inline)) void send0() { // 400ns high, 850ns low
LED_SET_PIN_H;
delayS();
LED_SET_PIN_L;
delayL();
//const uint32_t tmp = soc_get_ccount();
//LED_SET_PIN_H;
//while(soc_get_ccount() - tmp < 48) {}
//LED_SET_PIN_L;
//while(soc_get_ccount() - tmp < 192-24) {}
}
__attribute__((always_inline)) void reset() {
LED_SET_PIN_L; // low for more than 50 us
//const uint32_t tmp = soc_get_ccount();
//while(soc_get_ccount() - tmp < 9999) {}
//os_delay_us(100);
//LED_SET_PIN_H;
//asm("nop");asm("nop");asm("nop");asm("nop");asm("nop");asm("nop");asm("nop");asm("nop");
//LED_SET_PIN_L;
//delayMicroseconds(50);
}
__attribute__((always_inline)) void delayS() {
for(uint8_t i = 0; i < (9*1); ++i) {asm("nop");}
}
__attribute__((always_inline)) void delayL() {
for(uint8_t i = 0; i < (9*2); ++i) {asm("nop");}
}
};
#elif false// ESP32aaa
//#include <driver/gpio.h>
#include <rom/ets_sys.h>
#include <xtensa/core-macros.h>
#include <driver/rmt.h>
#include <soc/rmt_struct.h>
template <int numLEDs, gpio_num_t outPin> class WS2812B {
static constexpr const char* TAG = "WS2812";
static constexpr rmt_channel_t chan = RMT_CHANNEL_0;
//#define portDISABLE_INTERRUPTS() do { XTOS_SET_INTLEVEL(XCHAL_EXCM_LEVEL); portbenchmarkINTERRUPT_DISABLE(); } while (0)
//#define portENABLE_INTERRUPTS() do { portbenchmarkINTERRUPT_RESTORE(0); XTOS_SET_INTLEVEL(0); } while (0)
//#define ENABLE_INTERRUPTS() portENABLE_INTERRUPTS()
//#define DISABLE_INTERRUPTS() portDISABLE_INTERRUPTS()
static constexpr int numBits = (3*8) * 2; // (r,g,b) each 8 bit NOTE! must be < 64 to fit into the buffer!
//static constexpr int numItems = 256;//(numLEDs*3)*8;
//static constexpr int numItems = (numLEDs*3)*8;
rmt_item32_t items[numBits+1]; // + one entry has two bits + 0-terminator (just like within strings)
/** enable/disable each led */
bool enabled[numLEDs] = {true};
/** color-value for each attached LED */
Color colors[numLEDs];
public:
/** ctor */
WS2812B() {
init();
}
void init() {
ESP_LOGI(TAG, "init()");
rmt_config_t cfg;
cfg.rmt_mode = RMT_MODE_TX;
cfg.channel = chan;
cfg.gpio_num = outPin;
cfg.mem_block_num = 1;//chan+1;//8-chan;//chan+1;//8 - chan; //chan+1;//
cfg.clk_div = 8;
cfg.tx_config.loop_en = false;
cfg.tx_config.carrier_en = false;
cfg.tx_config.idle_output_en = true;
cfg.tx_config.idle_level = (rmt_idle_level_t)0;
cfg.tx_config.carrier_freq_hz = 10000;
cfg.tx_config.carrier_level = (rmt_carrier_level_t)1;
cfg.tx_config.carrier_duty_percent = 50;
ESP_ERROR_CHECK(rmt_config(&cfg));
ESP_ERROR_CHECK(rmt_driver_install(chan, 0, 0));
// setup constant values once
for (int idx = 0; idx < numBits; ++idx) {
items[idx].duration0 = 0;
items[idx].level0 = 1;
items[idx].duration1 = 0;
items[idx].level1 = 0;
}
items[numBits].val = 0; // 0 terminator
ESP_LOGI(TAG, "init OK!");
}
/** set the color for the given LED */
void setColor(const uint8_t idx, const Color rgb) {
colors[idx] = rgb;
}
/** set the color for all LEDs */
void setColor(const Color rgb) {
for (int idx = 0; idx < numLEDs; ++idx) {
colors[idx] = rgb;
}
}
/** enable/disable the given LED */
void setEnabled(const uint8_t idx, const bool en) {
enabled[idx] = en;
}
/** enable/disable all LEDs */
void setEnabled(const bool en) {
for (int idx = 0; idx < numLEDs; ++idx) {
enabled[idx] = en;
}
}
/** is the given LED enabled? */
bool isEnabled(const uint8_t idx) const {
return enabled[idx];
}
Color& getColor(const uint8_t idx) {
return colors[idx];
}
int nextLED;
/** flush configured changes */
IRAM_ATTR void flush() {
nextLED = 0;
ESP_LOGI(TAG, "sending %d LEDs", numLEDs);
// important! otherwise often interrupted within
portDISABLE_INTERRUPTS();
waitForTX();
const size_t toWrite = 8+8+8+1;// 8-bit R, 8-bit G, 8-bit B, null-terminator
// add null terminator
items[toWrite-1].val = 0;
// process each LED
for (int i = 0; i < numLEDs; i+=1) {
int idx = 0;
if (enabled[i]) {
emplaceByte(colors[i].g, idx);
emplaceByte(colors[i].r, idx);
emplaceByte(colors[i].b, idx);
} else {
emplaceByte(0, idx);
emplaceByte(0, idx);
emplaceByte(0, idx);
}
// wait for sending to complete using the RMT Unit's status
waitForTX();
ESP_ERROR_CHECK(rmt_fill_tx_items(this->chan, items, toWrite, 0));
ESP_ERROR_CHECK(rmt_tx_start(this->chan, true));
// reset for next round
//idx = 0;
}
//waitForTX();
portENABLE_INTERRUPTS();
}
private:
IRAM_ATTR void waitForTX() {
uint32_t status; // status while sending: 16797696 ??
for (int i = 0; i < 2000; ++i) {
rmt_get_status(this->chan, &status);
if (status == 0) {break;}
//if (status != 16797696) {break;}
//if ( (status & (1<<24)) == 0 ) {break;} // somewhat OK
}
// for (int i = 0; i < 1000; ++i) {
// asm volatile("nop");
// }
}
/** send one whole byte */
inline void emplaceByte(const uint8_t b, int& idx) {
if (b & 0b10000000) {emplace1(idx);} else {emplace0(idx);}
if (b & 0b01000000) {emplace1(idx);} else {emplace0(idx);}
if (b & 0b00100000) {emplace1(idx);} else {emplace0(idx);}
if (b & 0b00010000) {emplace1(idx);} else {emplace0(idx);}
if (b & 0b00001000) {emplace1(idx);} else {emplace0(idx);}
if (b & 0b00000100) {emplace1(idx);} else {emplace0(idx);}
if (b & 0b00000010) {emplace1(idx);} else {emplace0(idx);}
if (b & 0b00000001) {emplace1(idx);} else {emplace0(idx);}
}
/** emplace a 0 (short 1 pulse, long 0 pulse) */
inline void emplace0(int& idx) {
items[idx].duration0 = 2;//1;
//items[idx].level0 = 1;
items[idx].duration1 = 8;//7;
//items[idx].level1 = 0;
++idx;
}
/** emplace a 1 (long 1 pulse, short 0 pulse) */
inline void emplace1(int& idx) {
items[idx].duration0 = 7;//6;
//items[idx].level0 = 1;
items[idx].duration1 = 3;//2;
//items[idx].level1 = 0;
++idx;
}
};
#elif IS_ESP32
#include "../../io/I2S.h"
template <int PIN_DATA, int NUM_LEDS> class WS2812B {
static constexpr const char* TAG = "WS2818B";
/** color-value for each attached LED */
Color colors[NUM_LEDS];
/** enable/disable each led */
bool enabled[NUM_LEDS] = {true};
public:
/** ctor */
WS2812B() {
init();
}
void init() {
Log::addInfo(TAG, "init with %d leds", NUM_LEDS);
cfg();
}
/** set the color for the given LED */
void setColor(const uint8_t idx, const Color rgb) {
colors[idx] = rgb;
}
/** set the color for all LEDs */
void setColor(const Color rgb) {
for (int idx = 0; idx < NUM_LEDS; ++idx) {
colors[idx] = rgb;
}
}
/** enable/disable the given LED */
void setEnabled(const uint8_t idx, const bool en) {
enabled[idx] = en;
}
/** enable/disable all LEDs */
void setEnabled(const bool en) {
for (int idx = 0; idx < NUM_LEDS; ++idx) {
enabled[idx] = en;
}
}
/** is the given LED enabled? */
bool isEnabled(const uint8_t idx) const {
return enabled[idx];
}
Color& getColor(const uint8_t idx) {
return colors[idx];
}
/** flush configured changes */
void flush() {
flushBrightness(255);
}
void flushBrightness(const uint8_t brightness) {
portMUX_TYPE mux = portMUX_INITIALIZER_UNLOCKED;
portENTER_CRITICAL(&mux);
//for (volatile int i = 0; i < 256; ++i) {;}
//while (_getCycleCount() > 10000000) {;}
volatile uint8_t _x;
for (int i = 4; i >= 0; --i) {_x = colors[i].r;}
// process each LED
for (int i = 0; i < NUM_LEDS; ++i) {
_x = colors[i+1].r;
// send each LEDs 24-bit GRB data
const Color rgb = colors[i].brightness(brightness);
sendByte(rgb.g);
sendByte(rgb.r);
sendByte(rgb.b);
}
portEXIT_CRITICAL(&mux);
delay5000();
}
static inline uint32_t _getCycleCount(void) {
uint32_t ccount;
__asm__ __volatile__("rsr %0,ccount":"=a" (ccount));
return ccount;
}
inline void sendByte(const uint8_t b) {
if (b & 0b10000000) {send1();} else {send0();}
if (b & 0b01000000) {send1();} else {send0();}
if (b & 0b00100000) {send1();} else {send0();}
if (b & 0b00010000) {send1();} else {send0();}
if (b & 0b00001000) {send1();} else {send0();}
if (b & 0b00000100) {send1();} else {send0();}
if (b & 0b00000010) {send1();} else {send0();}
if (b & 0b00000001) {send1();} else {send0();}
}
inline void send1() {
MyGPIO::set(PIN_DATA);
delay800();
MyGPIO::clear(PIN_DATA);
delay100();
}
inline void send0() {
MyGPIO::set(PIN_DATA);
delay100();
MyGPIO::clear(PIN_DATA);
delay800();
}
void delay100() {
//for (volatile uint8_t i = 0; i < 1; ++i) {;}
const uint32_t start = _getCycleCount();
while (_getCycleCount() < start + 10) {;}
}
void delay800() {
//for (volatile uint8_t i = 0; i < 10; ++i) {;}
const uint32_t start = _getCycleCount();
while (_getCycleCount() < start + 100) {;}
}
void delay5000() {
//for (volatile uint8_t i = 0; i < 10; ++i) {;}
const uint32_t start = _getCycleCount();
while (_getCycleCount() < start + 1000) {;}
}
void cfg() {
MyGPIO::setOutput(PIN_DATA);
}
#ifdef xxx
/** comm via I2S */
using MyI2S = I2S<PIN_DATA,0,0>;
MyI2S i2s;
void cfg() {
const uint32_t sRate = 1000*1000 / (1.0) / 2 / 2;
i2s.configure(sRate, I2S_BITS_PER_SAMPLE_16BIT, I2S_CHANNEL_STEREO);
}
/** flush configured changes, including global brightness */
void flushBrightness(const uint8_t brightness) {
// seems important for i2s ?
reset();
uint8_t tmp[8*3];
// process each LED
for (int i = 0; i < NUM_LEDS; ++i) {
// send each LEDs 24-bit GRB data
if (enabled[i]) {
const Color rgb = colors[i].brightness(brightness);
sendByte(rgb.g, &tmp[0]);
sendByte(rgb.r, &tmp[8]);
sendByte(rgb.b, &tmp[16]);
} else {
sendByte(0, &tmp[0]);
sendByte(0, &tmp[8]);
sendByte(0, &tmp[16]);
}
i2s.add(tmp, sizeof(tmp));
}
reset();
}
void reset() {
const uint8_t lo[64] = {
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
};
for (int i = 0; i < 8 ; ++i) {
i2s.add(lo, sizeof(lo));
}
}
static constexpr const uint8_t DATA0 = 0b11100000;
static constexpr const uint8_t DATA1 = 0b11111000;
// send 1 LED byte. 1 bit to send = 8 byte i2s. also converts to little endian
inline void sendByte(const uint8_t b, uint8_t* dst) {
if (b & 0b10000000) {dst[1] = DATA1;} else {dst[1] = DATA0;}
if (b & 0b01000000) {dst[0] = DATA1;} else {dst[0] = DATA0;}
if (b & 0b00100000) {dst[3] = DATA1;} else {dst[3] = DATA0;}
if (b & 0b00010000) {dst[2] = DATA1;} else {dst[2] = DATA0;}
if (b & 0b00001000) {dst[5] = DATA1;} else {dst[5] = DATA0;}
if (b & 0b00000100) {dst[4] = DATA1;} else {dst[4] = DATA0;}
if (b & 0b00000010) {dst[7] = DATA1;} else {dst[7] = DATA0;}
if (b & 0b00000001) {dst[6] = DATA1;} else {dst[6] = DATA0;}
}
#endif
};
#endif
#endif // WS2812B_H