worked on SoftSPI and RFID-Reader MFRC522

This commit is contained in:
2017-09-15 18:02:15 +02:00
parent d028b79325
commit 0fc4c78d72
2 changed files with 651 additions and 26 deletions

View File

@@ -2,6 +2,8 @@
#define MFRC522_H
#include "../../io/SoftSPI.h"
#define WITH_DEBUG
/**
* RFID reader based on MFRC522
@@ -9,9 +11,23 @@
*
* http://www.nxp.com/documents/data_sheet/MFRC522.pdf
*
* http://www.gorferay.com/initialization-and-anticollision-iso-iec-14433-3/
* https://community.nxp.com/thread/437908
* https://www.nxp.com/docs/en/application-note/AN10833.pdf
* https://www.slideshare.net/contactsarbjeet/architecture-development-of-nfc-applications
* http://www.gorferay.com/mifare-and-handling-of-uids/
* http://www.proxmark.org/files/Documents/13.56%20MHz%20-%20MIFARE%20Classic/MIFARE%20Classic%20clones/ISSI_IS23SC4439_User_Manual.pdf
*/
class MFRC522 {
typedef struct {
uint8_t size; // Number of bytes in the UID. 4, 7 or 10.
uint8_t uidByte[10];
uint8_t sak; // The SAK (Select acknowledge) byte returned from the PICC after successful selection.
} Uid;
Uid uid;
struct OP {
uint8_t addr : 7; // bits 0-6
uint8_t rw : 1; // bit 7 [MSB] 1 = read, 0 = write
@@ -19,20 +35,78 @@ class MFRC522 {
enum class Register {
COMMAND_REG = 0x01,
INTERRUPTS_REG = 0x02,
ERROR_REG = 0x06,
STATUS1_REG = 0x07,
STATUS2_REG = 0x08,
FIFI_DATA_REG = 0x09, // access fifo buffer
FIFO_SIZE_REG = 0x0A, // number of available fifo data
MOD_REG = 0x11,
DEMOG_REG = 0x19,
COMMAND_REG = 0x01 << 1,
INTERRUPTS_REG = 0x02 << 1,
COM_IRQ_REG = 0x04 << 1,
DIV_IRQ_REG = 0x05 << 1,
ERROR_REG = 0x06 << 1,
STATUS1_REG = 0x07 << 1,
STATUS2_REG = 0x08 << 1,
FIFO_DATA_REG = 0x09 << 1, // access fifo buffer
FIFO_LEVEL_REG = 0x0A << 1, // number of available fifo data
CONTROL_REG = 0x0C << 1,
BIT_FRAMING_REG = 0x0D << 1,
COLL_REG = 0x0E << 1,
MODE_REG = 0x11 << 1,
TX_MODE_REG = 0x12 << 1,
RX_MODE_REG = 0x13 << 1,
TX_CONTROL_REG = 0x14 << 1,
TX_AUTO_REG = 0x15 << 1,
DEMOG_REG = 0x19 << 1,
TEST_SEL_1_REG = 0x31,
TEST_SEL_2_REG = 0x32,
VERSION_REG = 0x37, // software version
CRC_RES_H = 0x21 << 1,
CRC_RES_L = 0x22 << 1,
MOD_WIDTH_REG = 0x24 << 1,
T_MODE_REG = 0x2A << 1,
T_PRESCALER_REG = 0x2B << 1,
T_RELOAD_REG_H = 0x2C << 1,
T_RELOAD_REG_L = 0x2D << 1,
TEST_SEL_1_REG = 0x31 << 1,
TEST_SEL_2_REG = 0x32 << 1,
VERSION_REG = 0x37 << 1, // software version
};
enum class Command {
IDLE = 0x00,
MEM = 0x01,
GEN_RANDOM_ID = 0x02,
CALC_CRC = 0x03,
TRANSMIT = 0x04,
NO_CMD_CHANGE = 0x07,
RECEIVE = 0x08,
TRANSCEIVE = 0x0C,
MF_AUTHENT = 0x0E,
SOFT_RESET = 0x0F,
};
enum class PICCComand {
REQA = 0x26,
PICC_CMD_READ = 0x30,
PICC_CMD_WUPA = 0x52, // Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame.
PICC_CMD_CT = 0x88, // Cascade Tag. Not really a command, but used during anti collision.
PICC_CMD_SEL_CL1 = 0x93, // Anti collision/Select, Cascade Level 1
PICC_CMD_SEL_CL2 = 0x95, // Anti collision/Select, Cascade Level 2
PICC_CMD_SEL_CL3 = 0x97, // Anti collision/Select, Cascade Level 3
PICC_CMD_HLTA = 0x50, // HaLT command, Typ
};
enum class Status {
OK,
TIMEOUT_IRQ,
TIMEOUT_MANUAL,
TIMEOUT_CRC,
ERROR,
RESPONSE_TOO_LONG,
COLLISION,
INVALID,
INVALID_ATQA,
INTERNAL_ERROR,
WRONG_CRC,
WRONG_BCC,
};
struct CommandReg {
@@ -60,12 +134,530 @@ private:
public:
MFRC522() {
;
}
/** init */
void init() {
os_printf("init MFRC522\n");
spi.init();
os_delay_us(5000);
// writeReg8(Register::T_MODE_REG, 0x8D);
// writeReg8(Register::T_PRESCALER_REG, 0x3E);
// writeReg8(Register::T_RELOAD_REG_L, 0x30);
// writeReg8(Register::T_RELOAD_REG_H, 0x00);
// writeReg8(Register::TX_AUTO_REG, 0x40);
// writeReg8(Register::T_MODE_REG, 0x3D);
// antennaOn();
// Reset baud rates
writeReg8(Register::TX_MODE_REG, 0x00);
writeReg8(Register::RX_MODE_REG, 0x00);
// Reset ModWidthReg
writeReg8(Register::MOD_WIDTH_REG, 0x26);
writeReg8(Register::T_MODE_REG, 0x80);
writeReg8(Register::T_PRESCALER_REG, 0xA9);
writeReg8(Register::T_RELOAD_REG_L, 0xE8);
writeReg8(Register::T_RELOAD_REG_H, 0x03);
writeReg8(Register::TX_AUTO_REG, 0x40);
writeReg8(Register::MODE_REG, 0x3D); // very important. set CRC preset to 0x6363 by setting bit 0 and clearing bit 1 in MODE_REG
antennaOn();
writeReg8(Register::COMMAND_REG, Command::IDLE);
}
void getStatus() {
uint8_t s1 = readReg8(Register::STATUS1_REG);
uint8_t s2 = readReg8(Register::STATUS2_REG);
os_printf("s1: %d, s2: %d \n", (int)s1, (int)s2);
}
/** is there a card present? */
bool isCard() {
os_printf("** is card?\n");
uint8_t bufferATQA[2];
uint8_t bufferSize = sizeof(bufferATQA);
// Reset baud rates
writeReg8(Register::TX_MODE_REG, 0x00);
writeReg8(Register::RX_MODE_REG, 0x00);
// Reset ModWidthReg
writeReg8(Register::MOD_WIDTH_REG, 0x26);
Status res = requestA(bufferATQA, &bufferSize);
os_printf("isCard: %d type: %s\n", (int)res, getCardType(bufferATQA));
return res == Status::OK;
}
/** yes, card is present -> read it */
bool select() {
os_printf("** select\n");
ensureSane();
Status res;
uint8_t uid[10] = {};
res = anticol(1, &uid[0]);
debugShow(uid, 10);
return (res == Status::OK);
}
/** read the given 14-byte sector from the card */
void read(uint8_t address) {
os_printf("** read block %d\n", address);
os_delay_us(1000*50);
clearRegBits(Register::COLL_REG, 0x80);
writeReg8(Register::BIT_FRAMING_REG, 0);
// READ command: 0x30 ADR CRC1 CRC2
uint8_t buffer[4] = {(uint8_t)PICCComand::PICC_CMD_READ, address};
// calculate the CRC
calculateCRC(buffer, 2, &buffer[2]);
// response-buffer
uint8_t res[16];
uint8_t resLen = 16;
// send
transceive(buffer, 4, res, &resLen);
}
/** stop talking to the card */
void halt() {
os_printf("** halt the card\n");
// HALT command: 0x50 ADR CRC1 CRC2
uint8_t buffer[4] = {(uint8_t)PICCComand::PICC_CMD_HLTA, 0x00};
// calculate the CRC
calculateCRC(buffer, 2, &buffer[2]);
// send
uint8_t resLen = 1;
transceive(buffer, 4, buffer, &resLen);
}
void selftest() {
os_printf("MODE_REG: %d\n", readReg8(Register::MODE_REG));
writeReg8(Register::MODE_REG, 61);
os_printf("MODE_REG: %d\n", readReg8(Register::MODE_REG));
uint8_t res[2];
// MUST BE 3c a2
uint8_t out2[9] = {0x93, 0x70, 0x12, 0x34, 0x56, 0x78, 0x08, 0x00, 0x00};
calculateCRC(out2, 7, res);
debugShow(res, 2);
}
private:
void stopCrypto1() {
clearRegBits(Register::STATUS2_REG, 0x08); // reset MFCrypto1On
}
void antennaOn() {
uint8_t val = readReg8(Register::TX_CONTROL_REG);
if ((val & 0x03) != 0x03) {
writeReg8(Register::TX_CONTROL_REG, val | 0x03);
}
val = readReg8(Register::TX_CONTROL_REG);
os_printf("antenna: %d\n", (int) val);
}
Status requestA(uint8_t* bufferATQA, uint8_t* bufferSize) {
return piccREQAorWUPA(PICCComand::REQA, bufferATQA, bufferSize);
}
Status piccREQAorWUPA(const PICCComand cmd, uint8_t* buffer, uint8_t* bufferSize) {
clearRegBits(Register::COLL_REG, 0x80);
uint8_t validBits = 7;
const uint8_t _cmd = (uint8_t) cmd;
const Status status = transceive(&_cmd, 1, buffer, bufferSize, &validBits);
if (status != Status::OK) {return status;}
os_printf("response-size: %d, valid bits: %d\n", (int)*bufferSize, (int)validBits);
// ATQA must be 16 bits
if ((*bufferSize != 2) || (validBits != 0)) {
return Status::INVALID_ATQA;
}
return Status::OK;
}
void debugShow(const uint8_t* buf, uint8_t len) {
for (int i = 0; i < len; ++i) {
os_printf("%02x ", buf[i]);
}
os_printf("\n");
}
/** get card-type-name for the given 2-byte ATQA response */
const char* getCardType(const uint8_t* atqa) {
const uint16_t resp = atqa[0] << 8 | atqa[1];
if (resp == 0x0400) {return "MFOne-S50";} // http://www.elechouse.com/elechouse/images/product/13.56MHZ_RFID_Module/mifare_S50.pdf
if (resp == 0x0200) {return "MFOne-S70";}
if (resp == 0x4400) {return "MF-UltraLight";}
if (resp == 0x0800) {return "MF-Pro";}
if (resp == 0x4403) {return "MF Desire";}
return "Unknown";
}
Status anticol(int level, uint8_t* uidDst) {
os_printf("** anticol level %d\n", level);
// Prepare MFRC522
clearRegBits(Register::COLL_REG, 0x80); // ValuesAfterColl=1 => Bits received after collision are cleared.
uint8_t out[9];
uint8_t resLen;
Status s;
// send 2 bytes: 0x93 0x20 and expect 5 bytes of response : 4 bytes UID + 1 byte BCC checksum
// the first byte of the UID might be 0x88 to indicate that there are more requests needed
// to get the full UID
resLen = 5;
out[0] = (uint8_t)PICCComand::PICC_CMD_SEL_CL1;
out[1] = 0x20;
writeReg8(Register::BIT_FRAMING_REG, 0);
s = transceive(out, 2, uidDst, &resLen);
if (s != Status::OK) {return s;}
// NOTES
// if the received UID starts with 0x88, then we have to read the next block (like UTF-8)
// if the received UID starts with 0x08, it is a random number that will change every time
// response is SN0 SN1 SN2 SN3 BCC where BCC = SN0^SN1^SN2^SN3 -> check this!
const uint8_t serNumCheck = uidDst[0] ^ uidDst[1] ^ uidDst[2] ^ uidDst[3];
if (serNumCheck != uidDst[4]) {return Status::WRONG_BCC;}
os_printf("** ser num check %d == %d ?\n", serNumCheck, uidDst[4]);
// go on with select
return select(level, uidDst);
}
Status select(int level, uint8_t* uidPart) {
os_printf("** select level %d\n", level);
uint8_t cmd = (uint8_t) PICCComand::PICC_CMD_SEL_CL1; // TODO: depends on level
uint8_t bcc = uidPart[0] ^ uidPart[1] ^ uidPart[2] ^ uidPart[3];
uint8_t out[9] = {cmd, 0x70, uidPart[0], uidPart[1], uidPart[2], uidPart[3], bcc, 0x00, 0x00};
// replace 0x00 0x00 with the crc
calculateCRC(out, 7, &out[7]);
// transmit
uint8_t res[3];
uint8_t resLen = 3;
Status status = transceive(out, 9, res, &resLen);
// NOTES on SAK (selective ACK)
// result starts with 0x04? -> UID not complete, go on reading!
// result starts with 0x08? -> UID complete,
// this one also contains some details on the card we see
uint8_t SAK = res[0];
// another UID part needs to be read? (max: 3)
if (SAK == 0x04) { return anticol(level+1, &uidPart[4]); }
// done
return status;
}
/**
* calculate the CRC for the given bytes and write them (2 bytes) to the given destination
* NOTE: the CRC depends on the settings of ModeReg (bit 0 and 1) which control
* the CRC-16's preset: 0x0000 0x6363 0xa671 0xffff
* 0x6363 seems to be the "correct" one?!
*/
Status calculateCRC(const uint8_t *data, const uint8_t length, uint8_t* result) {
os_printf("calculate CRC for %d bytes\n", length);
writeReg8(Register::COMMAND_REG, Command::IDLE); // Stop any active command.
writeReg8(Register::DIV_IRQ_REG, 0x04); // Clear the CRCIRq interrupt request bit
fillFIFO(data, length); // fill the FIFO with the data to CRC
writeReg8(Register::COMMAND_REG, Command::CALC_CRC); // Start the calculation
// Wait for the CRC calculation to complete. Each iteration of the while-loop takes 17.73us.
for (int i = 0; i < 25; ++i) {
os_delay_us(1000*1);
// DivIrqReg[7..0] bits are: Set2 reserved reserved MfinActIRq reserved CRCIRq reserved reserved
const uint8_t n = readReg8(Register::DIV_IRQ_REG);
// CRCIRq bit set - calculation done
if (n & 0x04) {
writeReg8(Register::COMMAND_REG, Command::IDLE); // Stop calculating CRC for new content in the FIFO.
result[0] = readReg8(Register::CRC_RES_L);
result[1] = readReg8(Register::CRC_RES_H);
os_printf("crc calculation: OK!\n");
return Status::OK;
}
}
os_printf("CRC: TIMEOUT!!!\n");
return Status::TIMEOUT_CRC;
}
Status transceive(const uint8_t* srcData, const uint8_t srcDataLen, uint8_t* dstData, uint8_t* dstDataLen, uint8_t* validBits = nullptr, uint8_t rxAlign = 0, bool checkCRC = false) {
//os_printf("transceive %d bytes of data (valid bits: %d), expecting %d bytes of response\n", srcDataLen, *validBits, *dstDataLen);
os_printf("transceive %d bytes of data:", srcDataLen);
debugShow(srcData, srcDataLen);
const Status s = picc(Command::TRANSCEIVE, 0x30, srcData, srcDataLen, dstData, dstDataLen, validBits, rxAlign, checkCRC);
os_printf("transceive status: %d bytes: ", (int) s);
debugShow(dstData, *dstDataLen);
return s;
}
void fillFIFO(const uint8_t* srcData, const uint8_t srcDataLen) {
setRegBits(Register::FIFO_LEVEL_REG, 0x80); // flush FIFO (empty any existing data)
if (readReg8(Register::FIFO_LEVEL_REG) != 0) {
os_printf("!!!!!!!!!!!!!!!!! FIFO NOT EMPTY THOUGH IT SHOULD BE!\n");
}
writeReg(Register::FIFO_DATA_REG, srcData, srcDataLen); // write to-be-sent data to FIFO
if (readReg8(Register::FIFO_LEVEL_REG) != srcDataLen) {
os_printf("!!!!!!!!!!!!!!!!!failed to fill fifo\n");
}
}
void ensureSane() {
setRegBits(Register::FIFO_LEVEL_REG, 0x80); // flush FIFO (empty any existing data)
//writeReg8(Register::FIFO_LEVEL_REG, 0x80); // flush FIFO (empty any existing data)
writeReg8(Register::COMMAND_REG, (int) Command::IDLE); // stop previous commands
}
Status picc(Command cmd, const uint8_t waitIRQ, const uint8_t* srcData, const uint16_t srcDataLen, uint8_t* dstData, uint8_t* dstLen, uint8_t* validBits, uint8_t rxAlign, bool checkCRC) {
const uint8_t txLastBits = validBits ? *validBits : 0;
const uint8_t bitFraming = (rxAlign << 4) + txLastBits;
//os_printf("-- txLastBits: %d, bitFraming: %d \n", txLastBits, bitFraming);
ensureSane();
writeReg8(Register::COM_IRQ_REG, 0x7f); // clear interrupt flags
fillFIFO(srcData, srcDataLen);
writeReg8(Register::BIT_FRAMING_REG, bitFraming);
writeReg8(Register::COMMAND_REG, (int) cmd);
if (cmd == Command::TRANSCEIVE) {
//os_printf("-- start seding...\n");
setRegBits(Register::BIT_FRAMING_REG, 0x80); // startSend = 1
}
//const uint8_t _errReg = readReg8(Register::ERROR_REG);
//os_printf("cur err reg: %d\n", (int)_errReg);
int maxRuns = 10;
while(true) {
const uint8_t res = readReg8(Register::COM_IRQ_REG);
//os_printf("irq reg: %d\n", res);
// received the interrupt we are waiting for?
if (res & waitIRQ) {
os_printf("got needed interrupt\n"); break;
}
if (res & 0x01) {
return Status::TIMEOUT_IRQ;
}
if (--maxRuns == 0) {
os_printf("picc() Timeout\n");
return Status::TIMEOUT_MANUAL;
}
os_delay_us(1000*5);
}
// buffer overflow?
const uint8_t errReg = readReg8(Register::ERROR_REG);
if (errReg & 0x13) {return Status::ERROR;}
// caller wants to read a response?
if (dstData && dstLen) {
const uint8_t n = readReg8(Register::FIFO_LEVEL_REG);
os_printf("got %d bytes to read\n", (int) n);
// not enough space for the response data?
if (n > *dstLen) { return Status::RESPONSE_TOO_LONG; }
// read response
*dstLen = n;
readReg(Register::FIFO_DATA_REG, dstData, n, rxAlign);
uint8_t _validBits = readReg8(Register::CONTROL_REG) & 0x07;
if (validBits) {
*validBits = _validBits;
}
#ifdef WITH_DEBUG
// ensure fifo is now empty
if (readReg8(Register::FIFO_LEVEL_REG) != 0) {
os_printf("fifo not empty!\n");
return Status::INTERNAL_ERROR;
}
#endif
}
if (errReg & 0x08) {
return Status::COLLISION;
}
// TODO CRC
return Status::OK;
}
private:
void writeReg8(const Register reg, const Command cmd) {
writeReg8(reg, (uint8_t) cmd);
}
void writeReg8(const Register reg, const uint8_t value) {
spi.chipSelect();
writeTo((int)reg);
spi.writeByte(value);
spi.chipDeselect();
//uint8_t written = readReg8(reg);
//os_printf("write: %d to %d, re-read: %d \n", (int) value, (int) reg, (int) written);
}
void setRegBits(const Register reg, const uint8_t mask) {
const uint8_t tmp = readReg8(reg);
writeReg8(reg, tmp | mask);
}
void clearRegBits(const Register reg, const uint8_t mask) {
const uint8_t tmp = readReg8(reg);
writeReg8(reg, tmp & (~mask));
}
void writeReg(const Register reg, const uint8_t* data, const uint16_t len) {
//os_printf("writing %d bytes of data to %d\n", (int)len, (int)reg);
spi.chipSelect();
writeTo((int)reg);
for (int i = 0; i < len; ++i){
spi.writeByte(data[i]);
}
spi.chipDeselect();
}
uint8_t readReg8(const Register reg) {
spi.chipSelect();
readFrom((int)reg);
const uint8_t res = spi.readByte();
spi.chipDeselect();
return res;
}
// void readReg(const Register reg, uint8_t* dst, const uint8_t count, const uint8_t rxAlign = 0) {
// if (!count) {return;}
// for (int i = 0; i < count; ++i) {
// dst[i] = readReg8(reg);
// }
// #ifdef WITH_DEBUG
// if (readReg8(Register::FIFO_LEVEL_REG) != 0) {
// os_printf("!!!!!!!!!!!!! fifo is not empty");
// }
// #endif
// }
/** read multiple bytes from the same register (mainly FIFO) */
void readReg(const Register reg, uint8_t* dst, const uint8_t count, const uint8_t rxAlign = 0) {
spi.chipSelect();
// address for reading (MSB = 1)
const uint8_t address = (int) reg | 0x80;
spi.writeByte(address);
int i;
for (i = 0; i < count-1; ++i) {
if ( (i == 0) && rxAlign ) {
uint8_t mask = (0xFF << rxAlign) & 0xFF;
const uint8_t value = spi.readWriteByte(address);
dst[0] = (dst[0] & ~mask) | (value & mask);
} else {
dst[i] = spi.readWriteByte(address);
}
}
// read last byte and stop reading
dst[i] = spi.readWriteByte(0);
spi.chipDeselect();
}
// highest bit denotes whether reading or writing
void readFrom(uint8_t address) {
spi.writeByte(address | 0x80);
}
void writeTo(uint8_t address) {
spi.writeByte(address);
}

View File

@@ -4,6 +4,26 @@
//#include "IO.h"
#include "fastGPIO.h"
// wemos D1 mini
#define SPI_CS_OUTPUT GPIO15_OUTPUT_SET
#define SPI_MOSI_OUTPUT GPIO13_OUTPUT_SET
#define SPI_MISO_INPUT GPIO12_INPUT_SET
#define SPI_MISO_NO_PULLUP GPIO12_INPUT_PULLUP_UNSET
#define SPI_CLK_OUTPUT GPIO14_OUTPUT_SET
#define SPI_CS_LO GPIO15_L
#define SPI_CS_HI GPIO15_H
#define SPI_CLK_LO GPIO14_L
#define SPI_CLK_HI GPIO14_H
#define SPI_MOSI_LO GPIO13_L
#define SPI_MOSI_HI GPIO13_H
#define SPI_MISO_READ GPIO12_IN
#define SPI_FAST
class SoftSPI {
// MTDI GPIO12 MISO (DIN) D6
@@ -25,10 +45,10 @@ public:
}
void init() const {
GPIO12_INPUT_SET; GPIO12_INPUT_PULLUP_UNSET; // D6: MISO
GPIO13_OUTPUT_SET; // D7: MOSI
GPIO14_OUTPUT_SET; // D5: CLK
GPIO15_OUTPUT_SET; // D8: CS
SPI_MISO_INPUT; SPI_MISO_NO_PULLUP; // D6: MISO
SPI_MOSI_OUTPUT; // D7: MOSI
SPI_CLK_OUTPUT; // D5: CLK
SPI_CS_OUTPUT; // D8: CS
}
inline void chipSelect() const {
@@ -46,13 +66,13 @@ public:
}
inline void csLo() const { GPIO15_L; } // D8
inline void csHi() const { GPIO15_H; } // D8
inline void csLo() const { SPI_CS_LO; } // D8
inline void csHi() const { SPI_CS_HI; } // D8
inline void clkHi() const { GPIO14_H; } // D5
inline void clkLo() const { GPIO14_L; } // D5
inline void clkLo() const { SPI_CLK_LO; } // D5
inline void clkHi() const { SPI_CLK_HI; } // D5
inline bool getMISO() const {return GPIO12_IN;} // D6
inline bool getMISO() const {return SPI_MISO_READ;} // D6
/** read 16 bits */
@@ -77,7 +97,7 @@ public:
}
/** read 8 bits */
inline uint16_t readByte() const {
inline uint8_t readByte() const {
return
(readBit() << 7) |
(readBit() << 6) |
@@ -156,23 +176,25 @@ private:
inline uint8_t readWriteBit(const bool out) const {
if(out) {GPIO13_H;} else {GPIO13_L;}
if(out) {SPI_MOSI_HI;} else {SPI_MOSI_LO;}
wait();
clkHi();
wait();
const bool inp = getMISO();
wait();
clkLo();
wait();
return (inp) ? 1 : 0;
}
/** write one bit to the bus */
inline void writeBit(const bool out) const {
if(out) {GPIO13_H;} else {GPIO13_L;}
if(out) {SPI_MOSI_HI;} else {SPI_MOSI_LO;}
wait();
clkHi();
wait();
clkLo();
wait();
}
/** read one bit from the bus */
@@ -186,14 +208,25 @@ private:
return (val) ? 1 : 0;
}
#ifdef SPI_FAST
inline void wait() const {
__asm__ __volatile__("nop");
}
inline void waitLong() const {
os_delay_us(1);
}
#else
inline void wait() const {
os_delay_us(2);
}
inline void waitLong() const {
os_delay_us(50);
}
#endif
};
#endif // SOFTSPI_H