#ifndef FLOGIC_H #define FLOGIC_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Structs.h" #include #include "../Settings.h" /** particle-filter init randomly distributed within the building*/ struct PFInit : public SMC::ParticleFilterInitializer { Grid& grid; PFInit(Grid& grid) : grid(grid) {;} virtual void initialize(std::vector>& particles) override { for (SMC::Particle& p : particles) { int idx = rand() % grid.getNumNodes(); p.state.position = grid[idx]; // random position p.state.heading.direction = (rand() % 360) / 180.0 * M_PI; // random heading p.state.heading.error = 0; p.state.relativePressure = 0; // start with a relative pressure of 0 p.weight = 1.0 / particles.size(); // equal weight } } }; /** particle-filter init with fixed position*/ struct PFInitFixed : public SMC::ParticleFilterInitializer { Grid& grid; GridPoint startPos; float headingDeg; PFInitFixed(Grid& grid, GridPoint startPos, float headingDeg) : grid(grid), startPos(startPos), headingDeg(headingDeg) {;} virtual void initialize(std::vector>& particles) override { Distribution::Normal norm(0.0f, 1.5f); for (SMC::Particle& p : particles) { GridPoint pos = startPos + GridPoint(norm.draw(),norm.draw(),0.0f); GridPoint startPos = grid.getNodeFor(pos); p.state.position = startPos; // scatter arround the start position p.state.heading.direction = headingDeg / 180.0 * M_PI; // fixed heading p.state.heading.error = 0; p.state.relativePressure = 0; // start with a relative pressure of 0 p.weight = 1.0 / particles.size(); // equal weight } } }; /** very simple transition model, just scatter normal distributed */ struct PFTransSimple : public SMC::ParticleFilterTransition{ Grid& grid; // define the noise Distribution::Normal noise_cm = Distribution::Normal(0.0, Settings::IMU::stepLength * 2.0 * 100.0); Distribution::Normal height_m = Distribution::Normal(0.0, 6.0); // draw randomly from a vector //random_selector<> rand; // draw from 0 - 1 Distribution::Uniform uniRand = Distribution::Uniform(0,1); /** ctor */ PFTransSimple(Grid& grid) : grid(grid) {} virtual void transition(std::vector>& particles, const MyControl* control) override { //int noNewPositionCounter = 0; #pragma omp parallel for num_threads(6) for (int i = 0; i < particles.size(); ++i) { SMC::Particle& p = particles[i]; // update the baromter float deltaZ_cm = p.state.positionOld.inMeter().z - p.state.position.inMeter().z; p.state.relativePressure += deltaZ_cm * 0.105f; double diffHeight = p.state.position.inMeter().z + height_m.draw(); double newHeight_cm = p.state.position.z_cm; if(diffHeight > 9.1){ newHeight_cm = 10.8 * 100.0; } else if (diffHeight < 9.1 && diffHeight > 5.7){ newHeight_cm = 7.4 * 100.0; } else if (diffHeight < 5.7 && diffHeight > 2.0) { newHeight_cm = 4.0 * 100.0; } else { newHeight_cm = 0.0; } GridPoint noisePt(noise_cm.draw(), noise_cm.draw(), 0.0); GridPoint newPosition = p.state.position + noisePt; newPosition.z_cm = newHeight_cm; // p.state.position = grid.getNearestNode(newPosition); if(grid.hasNodeFor(newPosition)){ p.state.position = newPosition; }else{ //no new position! // #pragma omp atomic // noNewPositionCounter++; } } // std::cout << noNewPositionCounter << std::endl; } }; /** particle-filter transition */ struct PFTrans : public SMC::ParticleFilterTransition { Grid& grid; GridWalker walker; WalkModuleHeading modHeadUgly; // stupid WalkModuleHeadingControl modHead; WalkModuleHeadingVonMises modHeadMises; WalkModuleNodeImportance modImportance; WalkModuleSpread modSpread; WalkModuleFavorZ modFavorZ; //WalkModulePreventVisited modPreventVisited; //WalkModuleActivityControl modActivity; std::minstd_rand gen; PFTrans(Grid& grid, MyControl* ctrl) : grid(grid), modHead(ctrl, Settings::IMU::turnSigma), modHeadMises(ctrl, Settings::IMU::turnSigma) {//, modPressure(ctrl, 0.100) { walker.addModule(&modHead); //walker.addModule(&modHeadMises); // fürn arsch und geht net //walker.addModule(&modSpread); // might help in some situations! keep in mind! //walker.addModule(&modActivity); //walker.addModule(&modHeadUgly); //walker.addModule(&modImportance); //walker.addModule(&modFavorZ); //walker.addModule(&modButterAct); //walker.addModule(&modWifi); //walker.addModule(&modPreventVisited); } virtual void transition(std::vector>& particles, const MyControl* control) override { std::normal_distribution noise(0, Settings::IMU::stepSigma); for (SMC::Particle& p : particles) { //this is just for the smoothing transition... quick and dirty p.state.headingChangeMeasured_rad = control->turnSinceLastTransition_rad; // save old position p.state.positionOld = p.state.position; //GridPoint(p.state.position.x_cm, p.state.position.y_cm, p.state.position.z_cm); // update steps const float dist_m = std::abs(control->numStepsSinceLastTransition * Settings::IMU::stepLength + noise(gen)); // update the particle in-place p.state = walker.getDestination(grid, p.state, dist_m); // update the baromter float deltaZ_cm = p.state.positionOld.inMeter().z - p.state.position.inMeter().z; p.state.relativePressure += deltaZ_cm * 0.105f; } } }; /** * particle-filter transition * Adapting the Sample Size in Particle Filters Through KLD-Sampling - D. Fox */ struct PFTransKLDSampling : public SMC::ParticleFilterTransition { Grid& grid; GridWalker walker; WalkModuleHeading modHeadUgly; // stupid WalkModuleHeadingControl modHead; WalkModuleHeadingVonMises modHeadMises; WalkModuleNodeImportance modImportance; WalkModuleSpread modSpread; WalkModuleFavorZ modFavorZ; //WalkModulePreventVisited modPreventVisited; //WalkModuleActivityControl modActivity; std::minstd_rand gen; /** upper bound epsilon of the kld distance - the particle size is not allowed to exceed epsilon*/ double epsilon; /** the upper 1 - delta quantil of the normal distribution. something like 0.01 */ double delta; /** the bins */ Binning bins; /** max particle size */ uint32_t N_max; PFTransKLDSampling(Grid& grid, MyControl* ctrl) : grid(grid), modHead(ctrl, Settings::IMU::turnSigma), modHeadMises(ctrl, Settings::IMU::turnSigma) {//, modPressure(ctrl, 0.100) { //walker.addModule(&modHead); walker.addModule(&modHeadMises); //walker.addModule(&modSpread); // might help in some situations! keep in mind! //walker.addModule(&modActivity); //walker.addModule(&modHeadUgly); //walker.addModule(&modImportance); //walker.addModule(&modFavorZ); //walker.addModule(&modButterAct); //walker.addModule(&modWifi); //walker.addModule(&modPreventVisited); epsilon = 0.15; delta = 0.01; N_max = 5000; bins.setBinSizes({0.01, 0.01, 0.2, 0.3}); bins.setRanges({BinningRange(-1,100), BinningRange(-10,60), BinningRange(-1,15), BinningRange(0, 2 * M_PI)}); } virtual void transition(std::vector>& particles, const MyControl* control) override { std::normal_distribution noise(0, Settings::IMU::stepSigma); Distribution::Uniform getParticle(0, particles.size()-1); //init stuff uint32_t n = 0; uint32_t k = 1; double N = 0; //clear the bins bins.clearUsed(); //create new particle set std::vector> particlesNew; do{ //draw equally from the particle set int particleIdx = getParticle.draw(); SMC::Particle& p = particles[particleIdx]; //sample new particles based on the transition step // save old position p.state.positionOld = p.state.position; //GridPoint(p.state.position.x_cm, p.state.position.y_cm, p.state.position.z_cm); // update steps const float dist_m = std::abs(control->numStepsSinceLastTransition * Settings::IMU::stepLength + noise(gen)); // update the particle in-place p.state = walker.getDestination(grid, p.state, dist_m); // update the baromter float deltaZ_cm = p.state.positionOld.inMeter().z - p.state.position.inMeter().z; p.state.relativePressure += deltaZ_cm * 0.105f; //if it falls into an empty bin then draw another particle //is bin free? if(bins.isFree(p.state)){ k++; bins.markUsed(p.state); //calculate the new N double z_delta = Distribution::NormalCDF::getProbit(1 - delta); double front = (k - 1) / (2 * epsilon); double back = 1 - (2 / (9 * (k - 1))) + (std::sqrt(2 / (9 * (k - 1))) * z_delta ); N = front * std::pow(back, 3.0); } ++n; //add particle to new particleset particlesNew.push_back(p); } while (n < N && n < N_max); //write new particleset particles.clear(); particles.swap(particlesNew); } }; struct BFTrans : public SMC::BackwardFilterTransition{ public: /** * ctor * @param choice the choice to use for randomly drawing nodes * @param fp the underlying floorplan */ BFTrans() { //nothin } uint64_t ts = 0; uint64_t deltaMS = 0; /** set the current time in millisconds */ void setCurrentTime(const uint64_t ts) { if (this->ts == 0) { this->ts = ts; deltaMS = 0; } else { deltaMS = this->ts - ts; this->ts = ts; } } std::vector> transition(std::vector> const& toBeSmoothedParticles_qt, std::vector const& controls_1T) override{ Assert::doThrow( "Wrong transition function. Use the other one!"); std::vector> dummyReturn; return dummyReturn; } /** * smoothing transition starting at T with t, t-1,...0 * @param particles_qt q_t (Forward Filter) p2 * @param particles_qt1 q_t+1 (Smoothed Particles from Step before) p1 */ std::vector> transition(std::vector>const& particles_qt, std::vector>const& particles_qt1) override { // calculate alpha(m,n) = p(q_t+1(m) | q_t(n)) // this means, predict all possible states q_t+1 with all passible states q_t // e.g. p(q_490(1)|q_489(1));p(q_490(1)|q_489(2)) ... p(q_490(1)|q_489(N)) and // p(q_490(1)|q_489(1)); p(q_490(2)|q_489(1)) ... p(q_490(M)|q_489(1)) std::vector> predictionProbabilities; omp_set_dynamic(0); // Explicitly disable dynamic teams omp_set_num_threads(7); #pragma omp parallel for shared(predictionProbabilities) for (int i = 0; i < particles_qt1.size(); ++i) { std::vector innerVector; auto p1 = &particles_qt1[i]; for(int j = 0; j < particles_qt.size(); ++j){ auto p2 = &particles_qt[j]; const double distance_m = p2->state.position.inMeter().getDistance(p1->state.position.inMeter()) / 100.0; //TODO Incorporated Activity - see IPIN16 MySmoothingTransitionExperimental const double distProb = Distribution::Normal::getProbability(Settings::Smoothing::stepLength, Settings::Smoothing::stepSigma, distance_m); // TODO: FIX THIS CORRECTLY is the heading change similiar to the measurement? double diffRad = Angle::getDiffRAD_2PI_PI(p2->state.heading.direction.getRAD(), p1->state.heading.direction.getRAD()); double diffDeg = Angle::radToDeg(diffRad); double measurementRad = Angle::makeSafe_2PI(p1->state.headingChangeMeasured_rad); double measurementDeg = Angle::radToDeg(measurementRad); const double headingProb = Distribution::Normal::getProbability(measurementDeg, Settings::Smoothing::headingSigma, diffDeg); // does the angle between two particles positions is similiar to the measurement //double angleBetweenParticles = Angle::getDEG_360(p2->state.position.x, p2->state.position.y, p1->state.position.x, p1->state.position.y); //check how near we are to the measurement double diffZ = (p2->state.position.inMeter().z - p1->state.position.inMeter().z) / 100.0; const double floorProb = Distribution::Normal::getProbability(Settings::Smoothing::zChange, Settings::Smoothing::zSigma, diffZ); //combine the probabilities double prob = distProb;// * floorProb * headingProb; innerVector.push_back(prob); } #pragma omp critical predictionProbabilities.push_back(innerVector); } return predictionProbabilities; } }; struct PFEval : public SMC::ParticleFilterEvaluation { WiFiModel& wifiModel; WiFiObserverFree wiFiProbability; // free-calculation //WiFiObserverGrid wiFiProbability; // grid-calculation WiFiQualityAnalyzer wqa; BeaconModelLogDistCeiling& beaconModel; BeaconObserverFree beaconProbability; Grid& grid; PFEval(WiFiModel& wifiModel, BeaconModelLogDistCeiling& beaconModel, Grid& grid) : wifiModel(wifiModel), beaconModel(beaconModel), grid(grid), wiFiProbability(Settings::WiFiModel::sigma, wifiModel), beaconProbability(Settings::BeaconModel::sigma, beaconModel){ } /** probability step-distance */ //TODO: add number of recognized steps inline double getStepDistanceProb(const Point3 particle1, const Point3 particle2){ double distance = particle1.getDistance(particle2); return Distribution::Normal::getProbability(Settings::IMU::stepLength, Settings::IMU::stepSigma + 0.4, distance); } //TODO: combinied evaluation heading and distance /** probability for WIFI */ inline double getWIFI(const MyObs& observation, const WiFiMeasurements& vapWifi, const GridPoint& point) const { const MyNode& node = grid.getNodeFor(point); return wiFiProbability.getProbability(node, observation.currentTime, vapWifi); } /** probability for BEACONS */ inline double getBEACON(const MyObs& observation, const GridPoint& point){ //consider adding the persons height Point3 p = point.inMeter() + Point3(0,0,1.3); return beaconProbability.getProbability(p, observation.currentTime, observation.beacons); } /** probability for Barometer */ inline double getBaroPressure(const MyObs& observation, const float hPa) const{ return Distribution::Normal::getProbability(static_cast(hPa), 0.10, static_cast(observation.relativePressure)); } double getStairProb(const SMC::Particle& p, const Activity act) { const float kappa = 0.65; const MyNode& gn = grid.getNodeFor(p.state.position); switch (act) { case Activity::WALKING: if (gn.getType() == GridNode::TYPE_FLOOR) {return kappa;} if (gn.getType() == GridNode::TYPE_DOOR) {return kappa;} {return 1-kappa;} case Activity::WALKING_UP: case Activity::WALKING_DOWN: if (gn.getType() == GridNode::TYPE_STAIR) {return kappa;} if (gn.getType() == GridNode::TYPE_ELEVATOR) {return kappa;} {return 1-kappa;} } return 1.0; } virtual double evaluation(std::vector>& particles, const MyObs& observation) override { double sum = 0; const WiFiMeasurements wifiObs = Settings::WiFiModel::vg_eval.group(observation.wifi); wqa.add(wifiObs); float quality = wqa.getQuality(); #pragma omp parallel for num_threads(3) for (int i = 0; i < particles.size(); ++i) { SMC::Particle& p = particles[i]; Point3 pos_m = p.state.position.inMeter(); Point3 posOld_m = p.state.positionOld.inMeter(); double pWifi = getWIFI(observation, wifiObs, p.state.position); const double pStairProb = getStairProb(p, observation.activity); const double pStepDistance = getStepDistanceProb(pos_m, posOld_m); const double pBaroPressure = getBaroPressure(observation, p.state.relativePressure); //const double pBeacon = getBEACON(observation, p.state.position); //small checks Assert::isNotNaN(pWifi, "Wifi prob is nan"); Assert::isNot0(pBaroPressure,"pBaroPressure is null"); const bool volatile init = observation.currentTime.sec() < 25; //double pWiFiMod = (init) ? (std::pow(pWiFi, 0.1)) : (std::pow(pWiFi, 0.5)); //double pWiFiMod = (init) ? (std::pow(pWifi, 0.5)) : (std::pow(pWifi, 0.9)); // bad wifi? -> we have no idea where we are! if (quality < 0.25 && !init) { //pWifi = 1; //p.weight = std::pow(p.weight, 0.5); } const double prob = pWifi;// * pStairProb; p.weight = prob; #pragma omp atomic sum += (prob); } if(sum == 0.0){ return 1.0; } return sum; } }; #endif // FLOGIC_H