started changes for implementing fast smoothing

different new evaluations
small changes in transition
This commit is contained in:
toni
2017-11-11 01:41:51 +01:00
parent 232175c3dc
commit bea81eab62
5 changed files with 168 additions and 23 deletions

View File

@@ -63,7 +63,8 @@ ADD_DEFINITIONS(
-DWITH_TESTS -DWITH_TESTS
-DWITH_ASSERTIONS -DWITH_ASSERTIONS
-DWITH_DEBUG_LOG #-DWITH_DEBUG_LOG
-DWITH_DEBUG_PLOT
) )

View File

@@ -48,15 +48,15 @@ namespace Settings {
constexpr float sigma = 8.0; constexpr float sigma = 8.0;
/** if the wifi-signal-strengths are stored on the grid-nodes, this needs a grid rebuild! */ /** if the wifi-signal-strengths are stored on the grid-nodes, this needs a grid rebuild! */
constexpr float TXP = -40; constexpr float TXP = -40;
constexpr float EXP = 2.3; constexpr float EXP = 2.2;
constexpr float WAF = -8.0; constexpr float WAF = -8.0;
// how to perform VAP grouping. see // how to perform VAP grouping. see
// - calibration in Controller.cpp // - calibration in Controller.cpp
// - eval in Filter.h // - eval in Filter.h
// NOTE: maybe the UAH does not allow valid VAP grouping? delete the grid and rebuild without! // NOTE: maybe the UAH does not allow valid VAP grouping? delete the grid and rebuild without!
const VAPGrouper vg_calib = VAPGrouper(VAPGrouper::Mode::LAST_MAC_DIGIT_TO_ZERO, VAPGrouper::Aggregation::MAXIMUM, 1); const VAPGrouper vg_calib = VAPGrouper(VAPGrouper::Mode::LAST_MAC_DIGIT_TO_ZERO, VAPGrouper::Aggregation::MAXIMUM, VAPGrouper::TimeAggregation::AVERAGE, 1);
const VAPGrouper vg_eval = VAPGrouper(VAPGrouper::Mode::LAST_MAC_DIGIT_TO_ZERO, VAPGrouper::Aggregation::MAXIMUM, 1); const VAPGrouper vg_eval = VAPGrouper(VAPGrouper::Mode::LAST_MAC_DIGIT_TO_ZERO, VAPGrouper::Aggregation::MAXIMUM, VAPGrouper::TimeAggregation::AVERAGE, 1);
} }
namespace BeaconModel { namespace BeaconModel {
@@ -83,7 +83,7 @@ namespace Settings {
const std::vector<int> path3 = {10, 8, 7, 4, 11, 12, 13, 14, 6}; const std::vector<int> path3 = {10, 8, 7, 4, 11, 12, 13, 14, 6};
const std::vector<int> path4 = {0, 1, 2, 3, 4, 5, 6, 71, 7, 8, 9, 10}; const std::vector<int> path4 = {0, 1, 2, 3, 4, 5, 6, 71, 7, 8, 9, 10};
const std::vector<int> path5 = {40, 41, 85, 117, 31, 32, 33, 34, 35, 36, 37, 12, 3, 4, 5, 6, 71}; const std::vector<int> path5 = {40, 41, 85, 117, 31, 32, 33, 34, 35, 36, 37, 12, 3, 4, 5, 6, 71};
const std::vector<int> path6 = {28, 27, 26, 25, 24, 23, 22, 21, 20, 1, 2, 3, 4, 5, 6, 5}; const std::vector<int> path6 = {28, 27, 26, 25, 24, 23, 22, 21, 20, 1, 2, 3, 4, 6, 5};
} }

View File

@@ -24,6 +24,8 @@
#include <Indoor/sensors/beacon/model/BeaconModelLogDistCeiling.h> #include <Indoor/sensors/beacon/model/BeaconModelLogDistCeiling.h>
#include <Indoor/sensors/beacon/BeaconProbabilityFree.h> #include <Indoor/sensors/beacon/BeaconProbabilityFree.h>
#include <Indoor/sensors/activity/ActivityDetector.h>
#include <KLib/math/filter/particles/ParticleFilterMixing.h> #include <KLib/math/filter/particles/ParticleFilterMixing.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingSimple.h> #include <KLib/math/filter/particles/resampling/ParticleFilterResamplingSimple.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingPercent.h> #include <KLib/math/filter/particles/resampling/ParticleFilterResamplingPercent.h>
@@ -171,7 +173,7 @@ struct PFTrans : public K::ParticleFilterTransition<MyState, MyControl> {
PFTrans(Grid<MyNode>& grid, MyControl* ctrl) : grid(grid), modHead(ctrl, Settings::IMU::turnSigma), modHeadMises(ctrl, Settings::IMU::turnSigma) {//, modPressure(ctrl, 0.100) { PFTrans(Grid<MyNode>& grid, MyControl* ctrl) : grid(grid), modHead(ctrl, Settings::IMU::turnSigma), modHeadMises(ctrl, Settings::IMU::turnSigma) {//, modPressure(ctrl, 0.100) {
walker.addModule(&modHead); walker.addModule(&modHead);
//walker.addModule(&modHeadMises); //walker.addModule(&modHeadMises); // fürn arsch und geht net
//walker.addModule(&modSpread); // might help in some situations! keep in mind! //walker.addModule(&modSpread); // might help in some situations! keep in mind!
//walker.addModule(&modActivity); //walker.addModule(&modActivity);
//walker.addModule(&modHeadUgly); //walker.addModule(&modHeadUgly);
@@ -334,6 +336,110 @@ struct PFTransKLDSampling : public K::ParticleFilterTransition<MyState, MyContro
struct BFTrans : public K::BackwardFilterTransition<MyState>{ struct BFTrans : public K::BackwardFilterTransition<MyState>{
public:
/**
* ctor
* @param choice the choice to use for randomly drawing nodes
* @param fp the underlying floorplan
*/
BFTrans()
{
//nothin
}
uint64_t ts = 0;
uint64_t deltaMS = 0;
/** set the current time in millisconds */
void setCurrentTime(const uint64_t ts) {
if (this->ts == 0) {
this->ts = ts;
deltaMS = 0;
} else {
deltaMS = this->ts - ts;
this->ts = ts;
}
}
/**
* smoothing transition starting at T with t, t-1,...0
* @param particles_qt q_t (Forward Filter) p2
* @param particles_qt1 q_t+1 (Smoothed Particles from Step before) p1
*/
std::vector<std::vector<double>> transition(std::vector<K::Particle<MyState>>const& particles_qt,
std::vector<K::Particle<MyState>>const& particles_qt1,
const MyControl* control) override {
// Forward Transition von q_t nach q_t+1* with tracking of particle using an id = p(q_t+1* | q_t)
//TODO: darf ich das einfach? einfach eine neue Dichte Sampeln? Brauch ich da nicht eine "Erlaubnis" (Two-Filter Smoother kann das)
// law of total probabality auch einfach über ziehen ??
// KDE auf q_t+1 Samples = p(q_t+1 | o_1:T)
// Apply Position from Samples from q_t+1* into KDE of p(q_t+1 | o_1:T) to get p(q_t+1* | o_1:T)
// Calculate new weight w(q_(t|T)) = w(q_t) * p(q_t+1* | o_1:T) * p(q_t+1* | q_t) * normalisation
// calculate alpha(m,n) = p(q_t+1(m) | q_t(n))
// this means, predict all possible states q_t+1 with all passible states q_t
// e.g. p(q_490(1)|q_489(1));p(q_490(1)|q_489(2)) ... p(q_490(1)|q_489(N)) and
// p(q_490(1)|q_489(1)); p(q_490(2)|q_489(1)) ... p(q_490(M)|q_489(1))
std::vector<std::vector<double>> predictionProbabilities;
omp_set_dynamic(0); // Explicitly disable dynamic teams
omp_set_num_threads(7);
#pragma omp parallel for shared(predictionProbabilities)
for (int i = 0; i < particles_old.size(); ++i) {
std::vector<double> innerVector;
auto p1 = &particles_old[i];
for(int j = 0; j < particles_new.size(); ++j){
auto p2 = &particles_new[j];
const double distance_m = p2->state.position.inMeter().getDistance(p1->state.position.inMeter()) / 100.0;
//TODO Incorporated Activity - see IPIN16 MySmoothingTransitionExperimental
const double distProb = K::NormalDistribution::getProbability(Settings::Smoothing::stepLength, Settings::Smoothing::stepSigma, distance_m);
// TODO: FIX THIS CORRECTLY is the heading change similiar to the measurement?
double diffRad = Angle::getDiffRAD_2PI_PI(p2->state.heading.direction.getRAD(), p1->state.heading.direction.getRAD());
double diffDeg = Angle::radToDeg(diffRad);
double measurementRad = Angle::makeSafe_2PI(p1->state.headingChangeMeasured_rad);
double measurementDeg = Angle::radToDeg(measurementRad);
const double headingProb = K::NormalDistribution::getProbability(measurementDeg, Settings::Smoothing::headingSigma, diffDeg);
// does the angle between two particles positions is similiar to the measurement
//double angleBetweenParticles = Angle::getDEG_360(p2->state.position.x, p2->state.position.y, p1->state.position.x, p1->state.position.y);
//check how near we are to the measurement
double diffZ = (p2->state.position.inMeter().z - p1->state.position.inMeter().z) / 100.0;
const double floorProb = K::NormalDistribution::getProbability(Settings::Smoothing::zChange, Settings::Smoothing::zSigma, diffZ);
//combine the probabilities
double prob = distProb;// * floorProb * headingProb;
innerVector.push_back(prob);
}
#pragma omp critical
predictionProbabilities.push_back(innerVector);
}
return predictionProbabilities;
}
};
struct BFTransKDESlow : public K::BackwardFilterTransition<MyState>{
public: public:
/** /**
@@ -473,20 +579,20 @@ struct PFEval : public K::ParticleFilterEvaluation<MyState, MyObs> {
return Distribution::Normal<double>::getProbability(static_cast<double>(hPa), 0.10, static_cast<double>(observation.relativePressure)); return Distribution::Normal<double>::getProbability(static_cast<double>(hPa), 0.10, static_cast<double>(observation.relativePressure));
} }
double getStairProb(const K::Particle<MyState>& p, const ActivityButterPressure::Activity act) { double getStairProb(const K::Particle<MyState>& p, const Activity act) {
const float kappa = 0.75; const float kappa = 0.65;
const MyNode& gn = grid.getNodeFor(p.state.position); const MyNode& gn = grid.getNodeFor(p.state.position);
switch (act) { switch (act) {
case ActivityButterPressure::Activity::STAY: case Activity::WALKING:
if (gn.getType() == GridNode::TYPE_FLOOR) {return kappa;} if (gn.getType() == GridNode::TYPE_FLOOR) {return kappa;}
if (gn.getType() == GridNode::TYPE_DOOR) {return kappa;} if (gn.getType() == GridNode::TYPE_DOOR) {return kappa;}
{return 1-kappa;} {return 1-kappa;}
case ActivityButterPressure::Activity::UP: case Activity::WALKING_UP:
case ActivityButterPressure::Activity::DOWN: case Activity::WALKING_DOWN:
if (gn.getType() == GridNode::TYPE_STAIR) {return kappa;} if (gn.getType() == GridNode::TYPE_STAIR) {return kappa;}
if (gn.getType() == GridNode::TYPE_ELEVATOR) {return kappa;} if (gn.getType() == GridNode::TYPE_ELEVATOR) {return kappa;}
{return 1-kappa;} {return 1-kappa;}
@@ -532,7 +638,7 @@ struct PFEval : public K::ParticleFilterEvaluation<MyState, MyObs> {
//p.weight = std::pow(p.weight, 0.5); //p.weight = std::pow(p.weight, 0.5);
} }
const double prob = pWifi * pBaroPressure * pStairProb; const double prob = pWifi;// * pStairProb;
p.weight = prob; p.weight = prob;

View File

@@ -12,6 +12,8 @@
#include <Indoor/grid/factory/v2/GridNodeImportance.h> #include <Indoor/grid/factory/v2/GridNodeImportance.h>
#include <Indoor/math/distribution/KernelDensity.h> #include <Indoor/math/distribution/KernelDensity.h>
#include <Indoor/sensors/activity/Activity.h>
#include <Indoor/grid/walk/v2/GridWalker.h> #include <Indoor/grid/walk/v2/GridWalker.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleHeading.h> #include <Indoor/grid/walk/v2/modules/WalkModuleHeading.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleSpread.h> #include <Indoor/grid/walk/v2/modules/WalkModuleSpread.h>
@@ -63,12 +65,14 @@ struct MyControl {
/** turn angle (in radians) since the last transition */ /** turn angle (in radians) since the last transition */
float turnSinceLastTransition_rad = 0; float turnSinceLastTransition_rad = 0;
float sumTurn_rad = 0;
/** number of steps since the last transition */ /** number of steps since the last transition */
int numStepsSinceLastTransition = 0; int numStepsSinceLastTransition = 0;
/** current motion delta angle*/ /** current motion delta angle*/
float motionDeltaAngle_rad = 0; float motionDeltaAngle_rad = 0;
float sumMotion_rad = 0;
/** reset the control-data after each transition */ /** reset the control-data after each transition */
void resetAfterTransition() { void resetAfterTransition() {
@@ -91,7 +95,7 @@ struct MyObs {
WiFiMeasurements wifi; WiFiMeasurements wifi;
/** detected activity */ /** detected activity */
ActivityButterPressure::Activity activity = ActivityButterPressure::Activity::STAY; Activity activity = Activity::STANDING;
/** beacon measurements */ /** beacon measurements */
BeaconMeasurements beacons; BeaconMeasurements beacons;

View File

@@ -20,7 +20,8 @@
//toni //toni
const std::string mapDir = "/home/toni/Documents/programme/localization/IndoorMap/maps/"; const std::string mapDir = "/home/toni/Documents/programme/localization/IndoorMap/maps/";
//const std::string dataDir = "/home/toni/Documents/programme/localization/DynLag/code/data/"; //const std::string dataDir = "/home/toni/Documents/programme/localization/DynLag/code/data/";
const std::string dataDir = "/home/toni/Documents/programme/localization/museum/measurements/shl/"; //const std::string dataDir = "/home/toni/Documents/programme/localization/museum/measurements/shl/";
const std::string dataDir = "/home/toni/Documents/programme/localization/museum/measurements/motionAxisTest/";
const std::string errorDir = dataDir + "results/"; const std::string errorDir = dataDir + "results/";
/** describes one dataset (map, training, parameter-estimation, ...) */ /** describes one dataset (map, training, parameter-estimation, ...) */
@@ -68,6 +69,20 @@ struct Data {
mapDir + "grid_Stock_1-3_03.dat" mapDir + "grid_Stock_1-3_03.dat"
}; };
DataSetup MotionAxisTest = {
mapDir + "SHL40_noElevator.xml",
{
dataDir + "Path0_0.csv"
},
mapDir + "wifi_fp_all.dat",
40,
VAPGrouper::Mode::LAST_MAC_DIGIT_TO_ZERO,
mapDir + "grid_SHL40_noElevator.dat"
};
} data; } data;
Floorplan::IndoorMap* MyState::map; Floorplan::IndoorMap* MyState::map;
@@ -129,7 +144,7 @@ K::Statistics<float> run(DataSetup setup, int numFile, std::string folder, std::
plot.addStairs(map); plot.addStairs(map);
plot.gp << "set autoscale xy\n"; plot.gp << "set autoscale xy\n";
//plot.addGrid(grid); //plot.addGrid(grid);
plot.splot.getView().setEnabled(false);
// init ctrl and observation // init ctrl and observation
MyControl ctrl; MyControl ctrl;
@@ -141,8 +156,8 @@ K::Statistics<float> run(DataSetup setup, int numFile, std::string folder, std::
std::vector<int64_t> tsHistory; std::vector<int64_t> tsHistory;
//filter init //filter init
K::ParticleFilterHistory<MyState, MyControl, MyObs> pf(Settings::numParticles, std::unique_ptr<PFInit>(new PFInit(grid))); //K::ParticleFilterHistory<MyState, MyControl, MyObs> pf(Settings::numParticles, std::unique_ptr<PFInit>(new PFInit(grid)));
//K::ParticleFilterHistory<MyState, MyControl, MyObs> pf(Settings::numParticles, std::unique_ptr<PFInitFixed>(new PFInitFixed(grid, GridPoint(1120.0f, 750.0f, 740.0f), 90.0f))); K::ParticleFilterHistory<MyState, MyControl, MyObs> pf(Settings::numParticles, std::unique_ptr<PFInitFixed>(new PFInitFixed(grid, GridPoint(55.5f * 100.0, 43.7f * 100.0, 740.0f), 180.0f)));
pf.setTransition(std::unique_ptr<PFTrans>(new PFTrans(grid, &ctrl))); pf.setTransition(std::unique_ptr<PFTrans>(new PFTrans(grid, &ctrl)));
//pf.setTransition(std::unique_ptr<PFTransKLDSampling>(new PFTransKLDSampling(grid, &ctrl))); //pf.setTransition(std::unique_ptr<PFTransKLDSampling>(new PFTransKLDSampling(grid, &ctrl)));
@@ -159,7 +174,7 @@ K::Statistics<float> run(DataSetup setup, int numFile, std::string folder, std::
//pf.setResampling(std::unique_ptr<K::ParticleFilterResamplingKLD<MyState>>(new K::ParticleFilterResamplingKLD<MyState>())); //pf.setResampling(std::unique_ptr<K::ParticleFilterResamplingKLD<MyState>>(new K::ParticleFilterResamplingKLD<MyState>()));
} }
pf.setNEffThreshold(0.85); pf.setNEffThreshold(0.95);
//estimation //estimation
pf.setEstimation(std::unique_ptr<K::ParticleFilterEstimationWeightedAverage<MyState>>(new K::ParticleFilterEstimationWeightedAverage<MyState>())); pf.setEstimation(std::unique_ptr<K::ParticleFilterEstimationWeightedAverage<MyState>>(new K::ParticleFilterEstimationWeightedAverage<MyState>()));
@@ -192,9 +207,11 @@ K::Statistics<float> run(DataSetup setup, int numFile, std::string folder, std::
Timestamp lastTimestamp = Timestamp::fromMS(0); Timestamp lastTimestamp = Timestamp::fromMS(0);
StepDetection sd; StepDetection sd;
TurnDetection td; PoseDetection pd;
TurnDetection td(&pd);
MotionDetection md; MotionDetection md;
ActivityButterPressure act; ActivityButterPressure act;
//ActivityDetector act;
RelativePressure relBaro; RelativePressure relBaro;
relBaro.setCalibrationTimeframe( Timestamp::fromMS(5000) ); relBaro.setCalibrationTimeframe( Timestamp::fromMS(5000) );
@@ -234,7 +251,7 @@ K::Statistics<float> run(DataSetup setup, int numFile, std::string folder, std::
++ctrl.numStepsSinceLastTransition; ++ctrl.numStepsSinceLastTransition;
} }
const Offline::TS<AccelerometerData>& _acc = fr.getAccelerometer()[e.idx]; const Offline::TS<AccelerometerData>& _acc = fr.getAccelerometer()[e.idx];
td.addAccelerometer(ts, _acc.data); pd.addAccelerometer(ts, _acc.data);
} else if (e.type == Offline::Sensor::GYRO) { } else if (e.type == Offline::Sensor::GYRO) {
const Offline::TS<GyroscopeData>& _gyr = fr.getGyroscope()[e.idx]; const Offline::TS<GyroscopeData>& _gyr = fr.getGyroscope()[e.idx];
@@ -248,7 +265,8 @@ K::Statistics<float> run(DataSetup setup, int numFile, std::string folder, std::
obs.sigmaPressure = relBaro.getSigma(); obs.sigmaPressure = relBaro.getSigma();
//activity recognition //activity recognition
obs.activity = act.add(ts, fr.getBarometer()[e.idx].data); act.add(ts, fr.getBarometer()[e.idx].data);
obs.activity = act.get();
//activity for transition //activity for transition
} else if (e.type == Offline::Sensor::LIN_ACC) { } else if (e.type == Offline::Sensor::LIN_ACC) {
@@ -322,7 +340,16 @@ K::Statistics<float> run(DataSetup setup, int numFile, std::string folder, std::
if(Settings::useKLB){ if(Settings::useKLB){
plot.gp << "set label 1002 at screen 0.04, 0.94 'KLD: " << ":" << kld_data.back() << "'\n"; plot.gp << "set label 1002 at screen 0.04, 0.94 'KLD: " << ":" << kld_data.back() << "'\n";
} }
plot.gp << "set label 1002 at screen 0.98, 0.98 'act:" << obs.activity << "'\n"; plot.gp << "set label 1002 at screen 0.95, 0.98 'act:" << static_cast<int>(obs.activity) << "'\n";
//draw gyro angle and motion angle
//turn angle plot
static float angleSumTurn = 0; angleSumTurn += ctrl.turnSinceLastTransition_rad;
plot.showAngle(1, angleSumTurn + M_PI, Point2(0.9, 0.9), "Turn: ");
//motion angle plot
static float angleSumMotion = 0; angleSumMotion += ctrl.motionDeltaAngle_rad;
plot.showAngle(2, angleSumMotion + M_PI, Point2(0.9, 0.8), "Motion: ");
/** Draw everything */ /** Draw everything */
plot.show(); plot.show();
@@ -387,6 +414,7 @@ K::Statistics<float> run(DataSetup setup, int numFile, std::string folder, std::
plotkld.add(&lines); plotkld.add(&lines);
gp.draw(plotkld); gp.draw(plotkld);
gp.flush(); gp.flush();
plot.splot.getView().setEnabled(false);
} }
std::cout << "finished" << std::endl; std::cout << "finished" << std::endl;
@@ -406,7 +434,13 @@ int main(int argc, char** argv) {
for(int i = 0; i < 10; ++i){ for(int i = 0; i < 10; ++i){
tmp = run(data.FloorOneToThree, 2, "Wifi-Dongle-Test", Settings::Path_DongleTest::path6); // tmp = run(data.FloorOneToThree, 0, "Wifi-Dongle-Test", Settings::Path_DongleTest::path4);
// statsMedian.add(tmp.getMedian());
// statsAVG.add(tmp.getAvg());
// statsSTD.add(tmp.getStdDev());
// statsQuantil.add(tmp.getQuantile(0.75));
tmp = run(data.MotionAxisTest, 0, "Motion-Axis-Test", Settings::Path_DongleTest::path1);
statsMedian.add(tmp.getMedian()); statsMedian.add(tmp.getMedian());
statsAVG.add(tmp.getAvg()); statsAVG.add(tmp.getAvg());
statsSTD.add(tmp.getStdDev()); statsSTD.add(tmp.getStdDev());