This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
YASMIN/nav/NodeResampling.h
kazu c7c94cbebe some adjustments to match latest changes in KLib/Indoor
switched from Beacons to real Fingerprint points for fingerprinting
2017-03-14 09:17:50 +01:00

124 lines
3.3 KiB
C++

#ifndef NODERESAMPLING_H
#define NODERESAMPLING_H
#include <algorithm>
#include <random>
#include <Indoor/grid/Grid.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResampling.h>
/**
* uses simple probability resampling by drawing particles according
* to their current weight.
* HOWEVER: after drawing them, do NOT use them directly, but replace them with a neighbor
* O(log(n)) per particle
*/
template <typename State, typename Node>
class NodeResampling : public K::ParticleFilterResampling<State> {
private:
/** this is a copy of the particle-set to draw from it */
std::vector<K::Particle<State>> particlesCopy;
/** random number generator */
std::minstd_rand gen;
Grid<Node>& grid;
public:
/** ctor */
NodeResampling(Grid<Node>& grid) : grid(grid) {
gen.seed(1234);
}
void resample(std::vector<K::Particle<State>>& particles) override {
// compile-time sanity checks
// TODO: this solution requires EXPLICIT overloading which is bad...
//static_assert( HasOperatorAssign<State>::value, "your state needs an assignment operator!" );
const uint32_t cnt = (uint32_t) particles.size();
// equal weight for all particles. sums up to 1.0
const double equalWeight = 1.0 / (double) cnt;
// ensure the copy vector has the same size as the real particle vector
particlesCopy.resize(cnt);
// swap both vectors
particlesCopy.swap(particles);
// calculate cumulative weight
double cumWeight = 0;
for (uint32_t i = 0; i < cnt; ++i) {
cumWeight += particlesCopy[i].weight;
particlesCopy[i].weight = cumWeight;
}
std::uniform_real_distribution<float> distNewOne(0.0, 1.0);
std::uniform_int_distribution<int> distRndNode(0, grid.getNumNodes()-1);
std::normal_distribution<float> distTurn(0.0, +0.03);
// now draw from the copy vector and fill the original one
// with the resampled particle-set
for (uint32_t i = 0; i < cnt; ++i) {
// slight chance to get a truely random node as particle
// mainly for testing
if (distNewOne(gen) < 0.005) {
particles[i].state.position = grid[distRndNode(gen)];
particles[i].weight = equalWeight;
continue;
}
// normal redraw procedure
particles[i] = draw(cumWeight);
particles[i].weight = equalWeight;
const Node* n = grid.getNodePtrFor(particles[i].state.position);
if (n == nullptr) {continue;} // should not happen!
for (int j = 0; j < 2; ++j) {
std::uniform_int_distribution<int> distIdx(0, n->getNumNeighbors()-1);
const int idx = distIdx(gen);
n = &grid.getNeighbor(*n, idx);
}
particles[i].state.position = *n;
particles[i].state.heading.direction += distTurn(gen);
}
}
private:
/** draw one particle according to its weight from the copy vector */
const K::Particle<State>& draw(const double cumWeight) {
// generate random values between [0:cumWeight]
std::uniform_real_distribution<float> dist(0, cumWeight);
// draw a random value between [0:cumWeight]
const float rand = dist(gen);
// search comparator (cumWeight is ordered -> use binary search)
auto comp = [] (const K::Particle<State>& s, const float d) {return s.weight < d;};
auto it = std::lower_bound(particlesCopy.begin(), particlesCopy.end(), rand, comp);
return *it;
}
};
#endif // NODERESAMPLING_H