This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
YASMIN/nav/mesh/FilterMesh.h
2018-07-11 19:04:42 +02:00

221 lines
6.6 KiB
C++

#ifndef FILTERMESH_
#define FILTERMESH_
#include <KLib/math/filter/particles/ParticleFilter.h>
#include <KLib/math/filter/particles/estimation/ParticleFilterEstimationWeightedAverage.h>
#include <KLib/math/filter/particles/estimation/ParticleFilterEstimationOrderedWeightedAverage.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingSimple.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingPercent.h>
#include <Indoor/sensors/radio/WiFiProbabilityFree.h>
#include <Indoor/sensors/radio/model/WiFiModelLogDistCeiling.h>
#include <Indoor/sensors/radio/WiFiProbabilityFree.h>
#include <Indoor/sensors/radio/WiFiProbabilityGrid.h>
#include <Indoor/navMesh/NavMesh.h>
#include <Indoor/navMesh/walk/NavMeshWalkSimple.h>
#include "State.h"
#include "../../Settings.h"
#include <omp.h>
#include <future>
namespace MeshBased {
class PFInit : public K::ParticleFilterInitializer<MyState> {
private:
NM::NavMesh<NM::NavMeshTriangle>* mesh;
public:
PFInit(NM::NavMesh<NM::NavMeshTriangle>* mesh) : mesh(mesh) {
}
virtual void initialize(std::vector<K::Particle<MyState>>& particles) override {
std::minstd_rand gen;
std::uniform_real_distribution<float> distHead(0, 2*M_PI);
NM::NavMeshRandom<NM::NavMeshTriangle> rnd = mesh->getRandom();
for (K::Particle<MyState>& p : particles) {
p.state.loc = rnd.draw();
p.state.heading = Heading(distHead(gen)); // random heading
p.weight = 1.0 / particles.size(); // equal weight
}
// // fix position + heading
// for (K::Particle<MyState>& p : particles) {
//// const int idx = 9000;
//// const MyGridNode& node = (*grid)[idx];
// const MyGridNode& node = grid->getNodeFor(GridPoint(2000, 2000, 0)); // center of the testmap
// p.state.position = node;
// p.state.heading.direction = Heading(0);
// }
}
};
/*
class PFTrans : public K::ParticleFilterTransition<MyState, MyControl> {
public:
// local, static control-data COPY
MyControl ctrl;
Grid<MyGridNode>* grid;
GridWalker<MyGridNode, MyState> walker;
WalkModuleFavorZ<MyGridNode, MyState> modFavorZ;
WalkModuleHeadingControl<MyGridNode, MyState, MyControl> modHeading;
WalkModuleNodeImportance<MyGridNode, MyState> modImportance;
WalkModuleFollowDestination<MyGridNode, MyState> modDestination;
WalkModuleActivityControl<MyGridNode, MyState, MyControl> modActivity;
NodeResampling<MyState, MyGridNode> resampler;
std::minstd_rand gen;
public:
PFTrans(Grid<MyGridNode>* grid) : grid(grid), modHeading(&ctrl, Settings::IMU::turnSigma), modDestination(*grid), modActivity(&ctrl), resampler(*grid) {
//walker.addModule(&modFavorZ);
walker.addModule(&modHeading);
//walker.addModule(&modImportance);
walker.addModule(&modActivity);
if (Settings::destination != GridPoint(0,0,0)) {
//walker.addModule(&modDestination);
modDestination.setDestination(grid->getNodeFor(Settings::destination));
}
}
void transition(std::vector<K::Particle<MyState>>& particles, const MyControl* _ctrl) override {
// local copy!! observation might be changed async outside!! (will really produces crashes!)
this->ctrl = *_ctrl;
((MyControl*)_ctrl)->resetAfterTransition();
std::normal_distribution<float> noise(0, Settings::IMU::stepSigma);
// sanity check
Assert::equal((int)particles.size(), Settings::numParticles, "number of particles does not match the settings!");
//for (K::Particle<MyState>& p : particles) {
#pragma omp parallel for num_threads(3)
for (int i = 0; i < Settings::numParticles; ++i) {
//#pragma omp atomic
const float dist_m = std::abs(ctrl.numStepsSinceLastTransition * Settings::IMU::stepLength + noise(gen));
K::Particle<MyState>& p = particles[i];
double prob;
p.state = walker.getDestination(*grid, p.state, dist_m, prob);
//p.weight *= prob;//(prob > 0.01) ? (1.0) : (0.15);
//p.weight = (prob > 0.01) ? (1.0) : (0.15);
//p.weight = prob;
//p.weight = 1.0; // reset
//p.weight = std::pow(p.weight, 0.1); // make all particles a little more equal [less strict]
//p.weight *= std::pow(prob, 0.1); // add grid-walk-probability
p.weight = prob; // grid-walk-probability
if (p.weight != p.weight) {throw Exception("nan");}
}
}
};
class PFEval : public K::ParticleFilterEvaluation<MyState, MyObservation> {
Grid<MyGridNode>* grid;
WiFiModelLogDistCeiling& wifiModel;
//WiFiObserverFree wiFiProbability; // free-calculation
WiFiObserverGrid<MyGridNode> wiFiProbability; // grid-calculation
// smartphone is 1.3 meter above ground
const Point3 person = Point3(0,0,Settings::smartphoneAboveGround);
public:
PFEval(Grid<MyGridNode>* grid, WiFiModelLogDistCeiling& wifiModel) :
grid(grid), wifiModel(wifiModel),
//wiFiProbability(Settings::WiFiModel::sigma, wifiModel) { // WiFi free
wiFiProbability(Settings::WiFiModel::sigma) { // WiFi grid
}
double evaluation(std::vector<K::Particle<MyState>>& particles, const MyObservation& _observation) override {
double sum = 0;
// local copy!! observation might be changed async outside!! (will really produces crashes!)
const MyObservation observation = _observation;
// vap-grouping
const int numAP1 = observation.wifi.entries.size();
const WiFiMeasurements wifiObs = Settings::WiFiModel::vg_eval.group(_observation.wifi);
const int numAP2 = wifiObs.entries.size();
Log::add("Filter", "VAP: " + std::to_string(numAP1) + " -> " + std::to_string(numAP2));
// sanity check
Assert::equal((int)particles.size(), Settings::numParticles, "number of particles does not match the settings!");
#pragma omp parallel for num_threads(3)
for (int i = 0; i < Settings::numParticles; ++i) {
K::Particle<MyState>& p = particles[i];
// WiFi free
//const double pWiFi = wiFiProbability.getProbability(p.state.position.inMeter()+person, observation.currentTime, vg.group(observation.wifi));
// WiFi grid
const MyGridNode& node = grid->getNodeFor(p.state.position);
const double pWiFi = wiFiProbability.getProbability(node, observation.currentTime, wifiObs);
//Log::add("xxx", std::to_string(observation.currentTime.ms()) + "_" + std::to_string(wifiObs.entries[0].ts.ms()));
const double pStair = getStairProb(p, observation.activity);
const double pGPS = 1;
const double prob = pWiFi * pGPS * pStair;
p.weight *= prob; // NOTE: keeps the weight returned by the transition step!
//p.weight = prob; // does NOT keep the weights returned by the transition step
if (p.weight != p.weight) {throw Exception("nan");}
#pragma omp atomic
sum += p.weight;
}
return sum;
}
};
*/
}
#endif // FILTERMESH_