This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
YASMIN/nav/NavController.h
kazu 075d8bb633 a lot!!! of changes
added main menu
added debug display
many debug widgets for plotting live data
worked on android live sensors
added offline-data sensor feeding
some dummy data sensors
worked on the map display
added ui debug for grid-points, particles and weights
added a cool dude to display the estimation
added real filtering based on the Indoor components
c++11 fixes for android compilation
online and offline filtering support
new resampling technique for testing
map loading via dialog
2016-09-16 19:30:04 +02:00

300 lines
9.0 KiB
C++

#ifndef NAVCONTROLLER_H
#define NAVCONTROLLER_H
#include "../sensors/AccelerometerSensor.h"
#include "../sensors/GyroscopeSensor.h"
#include "../sensors/BarometerSensor.h"
#include "../sensors/WiFiSensor.h"
#include "../sensors/SensorFactory.h"
#include "../sensors/StepSensor.h"
#include "../sensors/TurnSensor.h"
#include "../ui/debug/SensorDataWidget.h"
#include "../ui/map/MapView.h"
#include <Indoor/Assertions.h>
#include <thread>
#include "State.h"
#include "Filter.h"
#include "Controller.h"
#include <KLib/misc/gnuplot/Gnuplot.h>
#include <KLib/misc/gnuplot/GnuplotSplot.h>
#include <KLib/misc/gnuplot/GnuplotSplotElementPoints.h>
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
#include "Settings.h"
#include "RegionalResampling.h"
Q_DECLARE_METATYPE(const void*)
class NavController :
public SensorListener<AccelerometerData>,
public SensorListener<GyroscopeData>,
public SensorListener<BarometerData>,
public SensorListener<WiFiMeasurements>,
public SensorListener<GPSData>,
public SensorListener<StepData>,
public SensorListener<TurnData> {
private:
Controller* mainController;
Grid<MyGridNode>* grid;
WiFiModelLogDistCeiling wifiModel;
Floorplan::IndoorMap* im;
MyObservation curObs;
MyControl curCtrl;
bool running = false;
std::thread tUpdate;
std::thread tDisplay;
std::unique_ptr<K::ParticleFilter<MyState, MyControl, MyObservation>> pf;
public:
virtual ~NavController() {
if (running) {stop();}
}
NavController(Controller* mainController, Grid<MyGridNode>* grid, Floorplan::IndoorMap* im) : mainController(mainController), grid(grid), wifiModel(im), im(im) {
wifiModel.loadAPs(im, Settings::wifiTXP, Settings::wifiEXP, Settings::wifiWAF);
SensorFactory::get().getAccelerometer().addListener(this);
SensorFactory::get().getGyroscope().addListener(this);
SensorFactory::get().getBarometer().addListener(this);
SensorFactory::get().getWiFi().addListener(this);
SensorFactory::get().getSteps().addListener(this);
SensorFactory::get().getTurns().addListener(this);
std::unique_ptr<K::ParticleFilterInitializer<MyState>> init(new PFInit(grid));
//std::unique_ptr<K::ParticleFilterEstimationWeightedAverage<MyState>> estimation(new K::ParticleFilterEstimationWeightedAverage<MyState>());
std::unique_ptr<K::ParticleFilterEstimationOrderedWeightedAverage<MyState>> estimation(new K::ParticleFilterEstimationOrderedWeightedAverage<MyState>(0.1));
//std::unique_ptr<K::ParticleFilterResamplingSimple<MyState>> resample(new K::ParticleFilterResamplingSimple<MyState>());
//std::unique_ptr<K::ParticleFilterResamplingPercent<MyState>> resample(new K::ParticleFilterResamplingPercent<MyState>(0.10));
std::unique_ptr<RegionalResampling> resample(new RegionalResampling());
std::unique_ptr<K::ParticleFilterEvaluation<MyState, MyObservation>> eval(new PFEval(wifiModel));
std::unique_ptr<K::ParticleFilterTransition<MyState, MyControl>> transition(new PFTrans(grid, &curCtrl));
pf = std::unique_ptr<K::ParticleFilter<MyState, MyControl, MyObservation>>(new K::ParticleFilter<MyState, MyControl, MyObservation>(Settings::numParticles, std::move(init)));
pf->setTransition(std::move(transition));
pf->setEvaluation(std::move(eval));
pf->setEstimation(std::move(estimation));
pf->setResampling(std::move(resample));
pf->setNEffThreshold(1.0);
}
void start() {
Assert::isFalse(running, "already started!");
running = true;
tUpdate = std::thread(&NavController::update, this);
tDisplay = std::thread(&NavController::display, this);
}
void stop() {
Assert::isTrue(running, "not started!");
running = false;
tUpdate.join();
tDisplay.join();
}
void onSensorData(Sensor<AccelerometerData>* sensor, const Timestamp ts, const AccelerometerData& data) override {
(void) sensor;
curObs.currentTime = ts;
}
void onSensorData(Sensor<GyroscopeData>* sensor, const Timestamp ts, const GyroscopeData& data) override {
(void) sensor;
curObs.currentTime = ts;
}
void onSensorData(Sensor<BarometerData>* sensor, const Timestamp ts, const BarometerData& data) override {
(void) sensor;
curObs.currentTime = ts;
}
void onSensorData(Sensor<WiFiMeasurements>* sensor, const Timestamp ts, const WiFiMeasurements& data) override {
(void) sensor;
(void) ts;
curObs.currentTime = ts;
curObs.wifi = data;
}
void onSensorData(Sensor<GPSData>* sensor, const Timestamp ts, const GPSData& data) override {
(void) sensor;
(void) ts;
curObs.currentTime = ts;
curObs.gps = data;
}
void onSensorData(Sensor<StepData>* sensor, const Timestamp ts, const StepData& data) override {
(void) sensor;
(void) ts;
curObs.currentTime = ts;
curCtrl.numStepsSinceLastTransition += data.stepsSinceLastEvent; // set to zero after each transition
}
void onSensorData(Sensor<TurnData>* sensor, const Timestamp ts, const TurnData& data) override {
(void) sensor;
(void) ts;
curObs.currentTime = ts;
curCtrl.turnSinceLastTransition_rad += data.radSinceLastEvent; // set to zero after each transition
}
int cameraMode = 0;
void toggleCamera() {
cameraMode = (cameraMode + 1) % 3;
}
private:
/** particle-filter update loop */
void update() {
Timestamp lastTransition;
while(running) {
// // fixed update rate based on the systems time -> LIVE! even for offline data
// const Timestamp ts1 = Timestamp::fromUnixTime();
// doUpdate();
// const Timestamp ts2 = Timestamp::fromUnixTime();
// const Timestamp needed = ts2-ts1;
// const Timestamp sleep = Timestamp::fromMS(500) - needed;
// std::this_thread::sleep_for(std::chrono::milliseconds(sleep.ms()));
// fixed update rate based on incoming sensor data
// allows working with live data and faster for offline data
const Timestamp diff = curObs.currentTime - lastTransition;
if (diff > Timestamp::fromMS(500)) {
doUpdate();
lastTransition = curObs.currentTime;
} else {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
}
MyState curEst;
//MyState lastEst;
void doUpdate() {
//lastEst = curEst;
curEst = pf->update(&curCtrl, curObs);
// hacky.. but we need to call this one from the main thread!
//mainController->getMapView()->showParticles(pf->getParticles());
qRegisterMetaType<const void*>();
Assert::isTrue(QMetaObject::invokeMethod(mainController->getMapView(), "showParticles", Qt::QueuedConnection, Q_ARG(const void*, &pf->getParticles())), "call failed");
PFTrans* trans = (PFTrans*)pf->getTransition();
const MyGridNode* node = grid->getNodePtrFor(curEst.position);
if (node) {
const DijkstraPath<MyGridNode> path = trans->modDestination.getShortestPath(*node);
// mainController->getMapView()->showGridImportance();
Assert::isTrue(QMetaObject::invokeMethod(mainController->getMapView(), "setPath", Qt::QueuedConnection, Q_ARG(const void*, &path)), "call failed");
}
/*
static K::Gnuplot gp;
K::GnuplotSplot plot;
K::GnuplotSplotElementLines lines; plot.add(&lines);
K::GnuplotSplotElementPoints points; plot.add(&points);
K::GnuplotSplotElementPoints best; plot.add(&best); best.setPointSize(2); best.setColorHex("#0000ff");
for (const K::Particle<MyState>& p : pf->getParticles()) {
const Point3 pos = p.state.position.inMeter();
points.add(K::GnuplotPoint3(pos.x, pos.y, pos.z));
}
for (const Floorplan::Floor* f : im->floors) {
for (const Floorplan::FloorOutlinePolygon* polygon : f->outline) {
for (int i = 0; i < polygon->poly.points.size(); ++i) {
const Point2 p1 = polygon->poly.points[i];
const Point2 p2 = polygon->poly.points[(i+1)%polygon->poly.points.size()];
K::GnuplotPoint3 gp1(p1.x, p1.y, f->atHeight);
K::GnuplotPoint3 gp2(p2.x, p2.y, f->atHeight);
lines.addSegment(gp1, gp2);
}
}
}
K::GnuplotPoint3 gpBest(curEst.position.x_cm/100.0f, curEst.position.y_cm/100.0f, curEst.position.z_cm/100.0f);
best.add(gpBest);
gp.draw(plot);
gp.flush();
*/
}
const int display_ms = 50;
/** UI update loop */
void display() {
while(running) {
doDisplay();
std::this_thread::sleep_for(std::chrono::milliseconds(display_ms));
}
}
Point3 curPosFast;
Point3 curPosSlow;
void doDisplay() {
const float kappa1 = display_ms / 1000.0f;
const float kappa2 = kappa1 * 0.7;
const float myHeight_m = 1.80;
curPosFast = curPosFast * (1-kappa1) + curEst.position.inMeter() * (kappa1);
curPosSlow = curPosSlow * (1-kappa2) + curEst.position.inMeter() * (kappa2);
const Point3 dir = (curPosFast - curPosSlow).normalized();
const Point3 dir2 = Point3(dir.x, dir.y, -0.2).normalized();
if (cameraMode == 0) {
mainController->getMapView()->setLookAt(curPosFast + Point3(0,0,myHeight_m), dir);
} else if (cameraMode == 1) {
mainController->getMapView()->setLookAt(curPosFast + Point3(0,0,myHeight_m) - dir2*4, dir2);
} else if (cameraMode == 2) {
const Point3 spectator = curPosFast + Point3(0,0,20) - dir*15;
const Point3 spectatorDir = (curPosFast - spectator).normalized();
mainController->getMapView()->setLookEye(spectator);
mainController->getMapView()->setLookDir(spectatorDir);
}
mainController->getMapView()->setCurrentEstimation(curPosFast, dir);
}
};
#endif // NAVCONTROLLER_H