This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
RussenJournal/main.cpp
2017-03-02 18:09:09 +01:00

345 lines
13 KiB
C++
Executable File

#include <iostream>
#include "filter/Structs.h"
#include "Plotti.h"
#include <chrono>
#include "filter/Logic.h"
#include <Indoor/floorplan/v2/Floorplan.h>
#include <Indoor/floorplan/v2/FloorplanReader.h>
#include <Indoor/grid/factory/v2/GridFactory.h>
#include <Indoor/grid/factory/v2/Importance.h>
#include <Indoor/geo/Point2.h>
#include <Indoor/sensors/offline/FileReader.h>
#include <KLib/math/statistics/Statistics.h>
#include <Indoor/sensors/imu/TurnDetection.h>
#include <Indoor/sensors/imu/StepDetection.h>
#include <Indoor/sensors/imu/MotionDetection.h>
#include <Indoor/sensors/pressure/RelativePressure.h>
#include <Indoor/sensors/radio/WiFiGridEstimator.h>
#include <Indoor/sensors/beacon/model/BeaconModelLogDistCeiling.h>
#include <Indoor/math/MovingAVG.h>
#include <Indoor/math/FixedFrequencyInterpolator.h>
#include <Indoor/data/Timestamp.h>
#include "Settings.h"
#include <KLib/math/filter/particles/ParticleFilter.h>
#include <KLib/math/filter/particles/ParticleFilterHistory.h>
#include <KLib/math/filter/particles/ParticleFilterInitializer.h>
#include <KLib/math/filter/particles/estimation/ParticleFilterEstimationWeightedAverage.h>
#include <KLib/math/filter/particles/estimation/ParticleFilterEstimationRegionalWeightedAverage.h>
#include <KLib/math/filter/particles/estimation/ParticleFilterEstimationOrderedWeightedAverage.h>
#include <KLib/math/filter/particles/estimation/ParticleFilterEstimationKernelDensity.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingSimple.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingPercent.h>
#include <Indoor/geo/Heading.h>
//frank
//const std::string mapDir = "/mnt/data/workspaces/IPIN2016/IPIN2016/competition/maps/";
//const std::string dataDir = "/mnt/data/workspaces/IPIN2016/IPIN2016/competition/src/data/";
//toni
const std::string mapDir = "/home/toni/Documents/programme/localization/russenJournal/russen/map/";
const std::string dataDir = "/home/toni/Documents/programme/localization/russenJournal/russen/data/";
const std::string errorDir = dataDir + "results/";
/** describes one dataset (map, training, parameter-estimation, ...) */
struct DataSetup {
std::string map;
std::vector<std::string> training;
std::string wifiParams;
int minWifiOccurences;
VAPGrouper::Mode vapMode;
std::string grid;
};
/** all configured datasets */
struct Data {
DataSetup BERKWERK = {
mapDir + "SHL/SHL25.xml",
{
dataDir + "bergwerk/path1/nexus/vor/1454775984079.csv",
dataDir + "bergwerk/path1/galaxy/vor/1454776168794.csv",
dataDir + "bergwerk/path2/nexus/vor/1454779863041.csv",
dataDir + "bergwerk/path2/galaxy/vor/1454780113404.csv",
dataDir + "bergwerk/path3/nexus/vor/1454782562231.csv",
dataDir + "bergwerk/path3/galaxy/vor/1454782896548.csv",
dataDir + "bergwerk/path4/nexus/vor/1454776525797.csv",
dataDir + "bergwerk/path4/galaxy/vor/1454779020844.csv"
},
dataDir + "bergwerk/wifiParams.txt",
40,
VAPGrouper::Mode::LAST_MAC_DIGIT_TO_ZERO,
mapDir + "SHL/grid25.dat"
};
DataSetup IPIN2015 = {
mapDir + "SHL/SHL_IPIN2015_gt.xml",
{
dataDir + "ipin2015/galaxy/Path0/1433581471902.csv",
dataDir + "ipin2015/nexus/Path0/1433606195078.csv",
dataDir + "ipin2015/galaxy/Path1/1433587749492.csv",
dataDir + "ipin2015/nexus/Path1/1433606670723.csv",
dataDir + "ipin2015/galaxy/Path2/1433581471902.csv",
dataDir + "ipin2015/nexus/Path2/1433607251262.csv",
dataDir + "eiszeit/path2/1479986737368.csv"
},
dataDir + "bergwerk/wifiParams.txt",
40,
VAPGrouper::Mode::LAST_MAC_DIGIT_TO_ZERO,
mapDir + "SHL/grid_IPIN2015_gt.dat"
};
} data;
Floorplan::IndoorMap* MyState::map;
void run(DataSetup setup, int numFile, std::string folder) {
// load the floorplan
Floorplan::IndoorMap* map = Floorplan::Reader::readFromFile(setup.map);
MyState::map = map;
WiFiModelLogDistCeiling WiFiModel(map);
WiFiModel.loadAPs(map, Settings::WiFiModel::TXP, Settings::WiFiModel::EXP, Settings::WiFiModel::WAF);
Assert::isFalse(WiFiModel.getAllAPs().empty(), "no AccessPoints stored within the map.xml");
BeaconModelLogDistCeiling beaconModel(map);
beaconModel.loadBeaconsFromMap(map, Settings::BeaconModel::TXP, Settings::BeaconModel::EXP, Settings::BeaconModel::WAF);
Assert::isFalse(beaconModel.getAllBeacons().empty(), "no Beacons stored within the map.xml");
// build the grid
std::ifstream inp(setup.grid, std::ifstream::binary);
Grid<MyNode> grid(20);
// grid.dat empty? -> build one and save it
if (!inp.good() || (inp.peek()&&0) || inp.eof()) {
std::ofstream onp;
onp.open(setup.grid);
GridFactory<MyNode> factory(grid);
factory.build(map);
grid.write(onp);
} else {
grid.read(inp);
}
// add node-importance
Importance::addImportance(grid);
// stamp WiFi signal-strengths onto the grid
WiFiGridEstimator::estimate(grid, WiFiModel, Settings::smartphoneAboveGround);
// reading file
FileReader fr(setup.training[numFile]);
// doing ground truth stuff
std::vector<int> path_0 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 1, 0};
std::vector<int> path_1 = {29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 13, 14, 15, 16, 17, 18, 19, 2, 1, 0};
std::vector<int> path_2 = {29, 28, 27, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 19, 18, 17, 16, 15, 14, 13, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29};
Interpolator<uint64_t, Point3> gtInterpolator = fr.getGroundTruthPath(map, path_1);
Plotti plot;
plot.addFloors(map);
plot.addOutline(map);
plot.addStairs(map);
plot.gp << "set autoscale xy\n";
//plot.addGrid(grid);
// init ctrl and observation
MyControl ctrl;
ctrl.resetAfterTransition();
MyObs obs;
int numParticles = 10000;
PFEval* eval = new PFEval(WiFiModel, beaconModel, grid);
//filter init
//std::unique_ptr<PFInit> init =
//K::ParticleFilterHistory<MyState, MyControl, MyObs> pf(numParticles, std::unique_ptr<PFInit>(new PFInit(grid)));
K::ParticleFilterHistory<MyState, MyControl, MyObs> pf(numParticles, std::unique_ptr<PFInitFixed>(new PFInitFixed(grid, GridPoint(1120.0f, 750.0f, 1080.0f), 90.0f)));
pf.setTransition(std::unique_ptr<PFTrans>(new PFTrans(grid, &ctrl)));
pf.setEvaluation(std::unique_ptr<PFEval>(eval));
//resampling
pf.setResampling(std::unique_ptr<K::ParticleFilterResamplingSimple<MyState>>(new K::ParticleFilterResamplingSimple<MyState>()));
//pf.setResampling(std::unique_ptr<K::ParticleFilterResamplingPercent<MyState>>(new K::ParticleFilterResamplingPercent<MyState>(0.4)));
pf.setNEffThreshold(0.95);
//estimation
//pf.setEstimation(std::unique_ptr<K::ParticleFilterEstimationWeightedAverage<MyState>>(new K::ParticleFilterEstimationWeightedAverage<MyState>()));
//pf.setEstimation(std::unique_ptr<K::ParticleFilterEstimationRegionalWeightedAverage<MyState>>(new K::ParticleFilterEstimationRegionalWeightedAverage<MyState>()));
pf.setEstimation(std::unique_ptr<K::ParticleFilterEstimationOrderedWeightedAverage<MyState>>(new K::ParticleFilterEstimationOrderedWeightedAverage<MyState>(0.95)));
//pf.setEstimation(std::unique_ptr<K::ParticleFilterEstimationKernelDensity<MyState, 3>>(new K::ParticleFilterEstimationKernelDensity<MyState, 3>()));
Timestamp lastTimestamp = Timestamp::fromMS(0);
StepDetection sd;
TurnDetection td;
MotionDetection md;
RelativePressure relBaro; relBaro.setCalibrationTimeframe( Timestamp::fromMS(5000) );
K::Statistics<float> errorStats;
//file writing for error data
long int t = static_cast<long int>(time(NULL));
std::ofstream errorFile;
errorFile.open (errorDir + folder + "/error_" + std::to_string(numFile) + "_" + std::to_string(t) + ".csv");
// parse each sensor-value within the offline data
for (const FileReader::Entry& e : fr.getEntries()) {
const Timestamp ts = Timestamp::fromMS(e.ts);
if (e.type == FileReader::Sensor::WIFI) {
obs.wifi = fr.getWiFiGroupedByTime()[e.idx].data;
} else if (e.type == FileReader::Sensor::BEACON){
obs.beacons.entries.push_back(fr.getBeacons()[e.idx].data);
// remove to old beacon measurements
obs.beacons.removeOld(ts);
} else if (e.type == FileReader::Sensor::ACC) {
if (sd.add(ts, fr.getAccelerometer()[e.idx].data)) {
++ctrl.numStepsSinceLastTransition;
}
const FileReader::TS<AccelerometerData>& _acc = fr.getAccelerometer()[e.idx];
td.addAccelerometer(ts, _acc.data);
} else if (e.type == FileReader::Sensor::GYRO) {
const FileReader::TS<GyroscopeData>& _gyr = fr.getGyroscope()[e.idx];
const float delta_gyro = td.addGyroscope(ts, _gyr.data);
ctrl.turnSinceLastTransition_rad += delta_gyro;
} else if (e.type == FileReader::Sensor::BARO) {
relBaro.add(ts, fr.getBarometer()[e.idx].data);
obs.relativePressure = relBaro.getPressureRealtiveToStart();
obs.sigmaPressure = relBaro.getSigma();
} else if (e.type == FileReader::Sensor::LIN_ACC) {
md.addLinearAcceleration(ts, fr.getLinearAcceleration()[e.idx].data);
} else if (e.type == FileReader::Sensor::GRAVITY) {
md.addGravity(ts, fr.getGravity()[e.idx].data);
Eigen::Vector2f curVec = md.getCurrentMotionAxis();
ctrl.motionDeltaAngle_rad = md.getMotionChangeInRad();
}
if (ts.ms() - lastTimestamp.ms() > 500) {
obs.currentTime = ts;
MyState est = pf.update(&ctrl, obs);
Point3 estPos = est.position.inMeter();
//current ground truth position
Point3 gtPos = gtInterpolator.get(static_cast<uint64_t>(ts.ms()));
plot.pInterest.clear();
// plotting stuff
static float angleSum = 0; angleSum += ctrl.turnSinceLastTransition_rad;
//plot.showAngle(1, ctrl.turnAngle);
plot.showAngle(2, angleSum + M_PI);
//plot.debugWiFi(eval->model, obs.wifis, obs.curTS);
//plot.debugProb(grid, std::bind(&PFEval::getGPS, eval, std::placeholders::_1, std::placeholders::_2), obs);
//plot.debugProb(grid, std::bind(&PFEval::getWIFI, eval, std::placeholders::_1, std::placeholders::_2), obs);
//plot.debugProb(grid, std::bind(&PFEval::getALL, eval, std::placeholders::_1, std::placeholders::_2), obs);
plot.setEst(estPos);
plot.setGT(gtPos);
plot.addEstimationNode(estPos);
plot.addParticles(pf.getParticles());
//plot.gp << "set arrow 919 from " << tt.pos.x << "," << tt.pos.y << "," << tt.pos.z << " to "<< tt.pos.x << "," << tt.pos.y << "," << tt.pos.z+1 << "lw 3\n";
//plot.gp << "set label 1001 at screen 0.02, 0.98 'base:" << relBaro.getBaseAvg() << " sigma:" << relBaro.getSigma() << " cur:" << relBaro.getPressureRealtiveToStart() << " hPa " << -relBaro.getPressureRealtiveToStart()/0.10/4.0f << " floor'\n";
int minutes = static_cast<int>(ts.sec()) / 60;
plot.gp << "set label 1002 at screen 0.02, 0.94 'Time: " << minutes << ":" << static_cast<int>(static_cast<int>(ts.sec())%60) << "'\n";
//plot.gp << "set label 1002 at screen 0.98, 0.98 'act:" << ctrl.barometer.act << "'\n";
// error between GT and estimation
float err_m = gtPos.getDistance(estPos);
errorStats.add(err_m);
errorFile << err_m << "\n";
plot.show();
usleep(33*10);
lastTimestamp = ts;
// reset control
ctrl.resetAfterTransition();
}
}
errorFile.close();
std::cout << "Statistical Analysis: " << std::endl;
std::cout << "Median: " << errorStats.getMedian() << " Average: " << errorStats.getAvg() << std::endl;
//Write the current plotti buffer into file
std::ofstream plotFile;
plotFile.open(errorDir + std::to_string(numFile) + "_" + std::to_string(t) + ".gp");
plot.saveToFile(plotFile);
plotFile.close();
// for(int i = 0; i < map->floors.size(); ++i){
// plot.printSingleFloor("/home/toni/Documents/programme/localization/IPIN2016/competition/eval/"+ folder + "/image" + std::to_string(numFile) + "_" + std::to_string(t), i);
// plot.show();
// usleep(1000*10);
// }
// plot.printSideView("/home/toni/Documents/programme/localization/IPIN2016/competition/eval/"+ folder + "/image" + std::to_string(numFile) + "_" + std::to_string(t), 90);
// plot.show();
// plot.printSideView("/home/toni/Documents/programme/localization/IPIN2016/competition/eval/"+ folder + "/image" + std::to_string(numFile) + "_" + std::to_string(t), 0);
// plot.show();
// plot.printOverview("/home/toni/Documents/programme/localization/IPIN2016/competition/eval/"+ folder + "/image" + std::to_string(numFile) + "_" + std::to_string(t));
// plot.show();
sleep(1);
}
int main(int argc, char** argv) {
//Testing files
//run(data.BERKWERK, 6, "EVALBERGWERK"); // Nexus vor
run(data.IPIN2015, 3, "EVALIPIN2015"); // Nexus Path2
}