#ifndef FLOGIC_H #define FLOGIC_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Structs.h" #include #include "../Settings.h" /** particle-filter init randomly distributed within the building*/ struct PFInit : public K::ParticleFilterInitializer { Grid& grid; PFInit(Grid& grid) : grid(grid) {;} virtual void initialize(std::vector>& particles) override { for (K::Particle& p : particles) { int idx = rand() % grid.getNumNodes(); p.state.position = grid[idx]; // random position p.state.heading.direction = (rand() % 360) / 180.0 * M_PI; // random heading p.state.heading.error = 0; p.state.relativePressure = 0; // start with a relative pressure of 0 } } }; /** particle-filter init with fixed position*/ struct PFInitFixed : public K::ParticleFilterInitializer { Grid& grid; GridPoint startPos; float headingDeg; PFInitFixed(Grid& grid, GridPoint startPos, float headingDeg) : grid(grid), startPos(startPos), headingDeg(headingDeg) {;} virtual void initialize(std::vector>& particles) override { Distribution::Normal norm(0.0f, 1.5f); for (K::Particle& p : particles) { GridPoint pos = startPos + GridPoint(norm.draw(),norm.draw(),0.0f); GridPoint startPos = grid.getNodeFor(pos); p.state.position = startPos; // scatter arround the start position p.state.heading.direction = headingDeg / 180.0 * M_PI; // fixed heading p.state.heading.error = 0; p.state.relativePressure = 0; // start with a relative pressure of 0 } } }; /** particle-filter transition */ struct PFTrans : public K::ParticleFilterTransition { Grid& grid; GridWalker walker; WalkModuleHeading modHeadUgly; // stupid WalkModuleHeadingControl modHead; WalkModuleHeadingVonMises modHeadMises; WalkModuleNodeImportance modImportance; WalkModuleSpread modSpread; WalkModuleFavorZ modFavorZ; //WalkModulePreventVisited modPreventVisited; std::minstd_rand gen; PFTrans(Grid& grid, MyControl* ctrl) : grid(grid), modHead(ctrl, Settings::IMU::turnSigma), modHeadMises(ctrl, Settings::IMU::turnSigma) {//, modPressure(ctrl, 0.100) { //walker.addModule(&modHead); walker.addModule(&modHeadMises); //walker.addModule(&modSpread); // might help in some situations! keep in mind! //walker.addModule(&modHeadUgly); //walker.addModule(&modImportance); //walker.addModule(&modFavorZ); //walker.addModule(&modButterAct); //walker.addModule(&modWifi); //walker.addModule(&modPreventVisited); } virtual void transition(std::vector>& particles, const MyControl* control) override { std::normal_distribution noise(0, Settings::IMU::stepSigma); for (K::Particle& p : particles) { // save old position p.state.positionOld = p.state.position; //GridPoint(p.state.position.x_cm, p.state.position.y_cm, p.state.position.z_cm); // update steps const float dist_m = std::abs(control->numStepsSinceLastTransition * Settings::IMU::stepLength + noise(gen)); // update the particle in-place p.state = walker.getDestination(grid, p.state, dist_m); // update the baromter float deltaZ_cm = p.state.positionOld.inMeter().z - p.state.position.inMeter().z; p.state.relativePressure += deltaZ_cm * 0.105f; } } }; struct PFEval : public K::ParticleFilterEvaluation { WiFiModelLogDistCeiling& wifiModel; //WiFiObserverFree wiFiProbability; // free-calculation WiFiObserverGrid wiFiProbability; // grid-calculation BeaconModelLogDistCeiling& beaconModel; BeaconObserverFree beaconProbability; Grid& grid; PFEval(WiFiModelLogDistCeiling& wifiModel, BeaconModelLogDistCeiling& beaconModel, Grid& grid) : wifiModel(wifiModel), beaconModel(beaconModel), grid(grid), wiFiProbability(Settings::WiFiModel::sigma), beaconProbability(Settings::BeaconModel::sigma, beaconModel){ } /** probability for WIFI */ inline double getWIFI(const MyObs& observation, const WiFiMeasurements& vapWifi, const GridPoint& point) const { const MyNode& node = grid.getNodeFor(point); return wiFiProbability.getProbability(node, observation.currentTime, vapWifi); } /** probability for BEACONS */ inline double getBEACON(const MyObs& observation, const GridPoint& point){ //consider adding the persons height Point3 p = point.inMeter() + Point3(0,0,1.3); return beaconProbability.getProbability(p, observation.currentTime, observation.beacons); } /** probability for Barometer */ inline double getBaroPressure(const MyObs& observation, const float hPa) const{ return Distribution::Normal::getProbability(static_cast(hPa), 0.10, static_cast(observation.relativePressure)); } virtual double evaluation(std::vector>& particles, const MyObs& observation) override { double sum = 0; const WiFiMeasurements wifiObs = Settings::WiFiModel::vg_eval.group(observation.wifi); for (K::Particle& p : particles) { // Point3 pos_m = p.state.position.inMeter(); // Point3 posOld_m = p.state.positionOld.inMeter(); const double pWifi = getWIFI(observation, wifiObs, p.state.position); const double pBaroPressure = getBaroPressure(observation, p.state.relativePressure); const double pBeacon = getBEACON(observation, p.state.position); //small checks _assertNotNAN(pWifi, "Wifi prob is nan"); _assertNot0(pBaroPressure,"pBaroPressure is null"); const double prob = pWifi * pBaroPressure * pBeacon; p.weight = prob; sum += (prob); } if(sum == 0.0){ return 1.0; } return sum; } }; #endif // FLOGIC_H