This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
OTHER2017/pf/EvalWalk.h
2017-05-01 18:44:07 +02:00

767 lines
23 KiB
C++
Executable File

#ifndef EVALWALK_H
#define EVALWALK_H
#include <KLib/math/filter/particles/ParticleFilter.h>
#include <KLib/math/filter/particles/ParticleFilterEvaluation.h>
#include <KLib/math/filter/particles/ParticleFilterInitializer.h>
#include <KLib/math/filter/particles/ParticleFilterTransition.h>
#include <KLib/math/filter/particles/estimation/ParticleFilterEstimationWeightedAverage.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingSimple.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingPercent.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingNEff.h>
#include "../plots/PlotErrFunc.h"
#include <thread>
#include "Indoor/sensors/radio/setup/WiFiOptimizer.h"
#include "Indoor/sensors/radio/setup/WiFiFingerprint.h"
#include "Indoor/sensors/radio/setup/WiFiFingerprints.h"
#include "Indoor/sensors/radio/setup/WiFiOptimizer.h"
#include "Indoor/sensors/radio/setup/WiFiOptimizerLogDistCeiling.h"
#include "Indoor/sensors/radio/VAPGrouper.h"
#include "Indoor/sensors/imu/StepDetection.h"
#include "Indoor/sensors/imu/TurnDetection.h"
#include "Indoor/sensors/activity/ActivityDetector.h"
#include "Indoor/floorplan/v2/Floorplan.h"
#include "Indoor/floorplan/v2/FloorplanReader.h"
#include "Indoor/floorplan/v2/FloorplanHelper.h"
#include "Indoor/floorplan/v2/FloorplanCeilings.h"
#include "Indoor/sensors/radio/model/WiFiModels.h"
#include "Indoor/sensors/offline/FileReader.h"
#include "../Helper.h"
#include "PF.h"
#include "../plots/PlotErrTime.h"
#include <Indoor/debug/PlotWifiMeasurements.h>
#include <Indoor/sensors/offline/FilePlayer.h>
#include <Indoor/sensors/offline/FileReader.h>
#include <Indoor/sensors/offline/Listener.h>
//#define PLOT_LIVE
//#define PLOT_WIFI
//#define PLOT_ERROR_TIME
//#define PLOT_ERROR_FUNC
#define PLOT_UPDATE_STEP 20
class EvalWalk : public Offline::Listener {
Grid<MyGridNode>* grid;
K::ParticleFilter<MyState, MyControl, MyObservation>* pf;
std::string runName;
#ifdef PLOT_LIVE
Plotty plotty;
#endif
#ifdef PLOT_WIFI
PlotWifiMeasurements plotWifi;
#endif
#ifdef PLOT_ERROR_TIME
PlotErrTime pet;
#endif
#ifdef PLOT_ERROR_FUNC
PlotErrFunc pef;
#endif
Offline::FileReader reader;
Offline::FilePlayer player;
Offline::FileReader::GroundTruth groundTruthLive;
Timestamp lastTransition;
MyObservation curObs;
MyControl curCtrl;
MyState curEst;
StepDetection stepDetect;
TurnDetection turnDetect;
ActivityDetector actDetect;
std::vector<Point3> groundTruth;
Floorplan::IndoorMap* map;
EarthMapping em;
std::string walkName;
float absHead = 0;
public:
~EvalWalk() {
delete grid;
delete pf;
}
EvalWalk(Floorplan::IndoorMap* map) :
#ifdef PLOT_LIVE
plotty(map),
#endif
map(map), em(map)
#ifdef PLOT_ERROR_TIME
,pet("\\small{time (sec)}", "\\small{error (m)}", "\\small{APs visible}")
#endif
#ifdef PLOT_ERROR_FUNC
,pef("\\small{error (m)}", "\\small{updates (\\%)}")
#endif
{
const std::string saveFile = Settings::pathData + "/grid.dat";
grid = new Grid<MyGridNode>(Settings::Grid::gridSize_cm);
#ifdef PLOT_LIVE
// once
plotty.buildFloorplan();
#endif
// deserialize grid
std::ifstream inp(saveFile, std::ofstream::binary);
if (inp) {
grid->read(inp);
inp.close();
} else {
// build the grid
GridFactory<MyGridNode> gf(*grid);
gf.build(map);
Importance::addImportance(*grid);
std::ofstream out(saveFile, std::ofstream::binary);
grid->write(out);
out.close();
}
pf = new K::ParticleFilter<MyState, MyControl, MyObservation>( Settings::numParticles, std::unique_ptr<PFInit>(new PFInit(grid)) );
// transition
pf->setTransition( std::unique_ptr<PFTrans>( new PFTrans(grid)) );
// resampling step?
pf->setNEffThreshold(0.02);
pf->setResampling( std::unique_ptr<K::ParticleFilterResamplingSimple<MyState>>(new K::ParticleFilterResamplingSimple<MyState>()) );
//pf->setNEffThreshold(0.75);
//pf->setResampling( std::unique_ptr<K::ParticleFilterResamplingPercent<MyState>>(new K::ParticleFilterResamplingPercent<MyState>(0.10)) );
//pf->setNEffThreshold(0.75);
//pf->setResampling( std::unique_ptr<K::ParticleFilterResamplingPercent<MyState>>(new K::ParticleFilterResamplingPercent<MyState>(0.05)) );
// K::ParticleFilterResamplingNEff<MyState>* res = new K::ParticleFilterResamplingNEff<MyState>(0.75, 0.05);
// pf->setNEffThreshold(1.0);
// pf->setResampling( std::unique_ptr<K::ParticleFilterResamplingNEff<MyState>>(res) );
// move during resampling. NOT ALLOWED!
// res->setDrawCallback([&] (K::Particle<MyState>& p) {
// static std::minstd_rand gen;
// static int cnt = 0; ++cnt;
// bool init = cnt < pf->getParticles().size() * 50;
// const MyGridNode* n = grid->getNodePtrFor(p.state.position);
// std::normal_distribution<float> distTurn(0, (init) ? (0.5) : (0.05));
// for (int j = 0; j < 2; ++j) {
// std::uniform_int_distribution<int> distIdx(0, n->getNumNeighbors()-1);
// const int idx = distIdx(gen);
// n = &(grid->getNeighbor(*n, idx));
// }
// p.state.position = *n;
// p.state.heading.direction += distTurn(gen);
// });
// state estimation step
//pf->setEstimation( std::unique_ptr<K::ParticleFilterEstimationWeightedAverage<MyState>>(new K::ParticleFilterEstimationWeightedAverage<MyState>()));
//pf->setEstimation( std::unique_ptr<K::ParticleFilterEstimationRegionalWeightedAverage<MyState>>(new K::ParticleFilterEstimationRegionalWeightedAverage<MyState>()));
pf->setEstimation( std::unique_ptr<K::ParticleFilterEstimationOrderedWeightedAverage<MyState>>(new K::ParticleFilterEstimationOrderedWeightedAverage<MyState>(0.25f)));
}
struct LeWalk {
std::string name;
float absHead;
std::string walkFile;
std::vector<int> gtIndices;
LeWalk(const std::string& name, float absHead, std::string walkFile, std::vector<int> gtIndices) :
name(name), absHead(absHead), walkFile(walkFile), gtIndices(gtIndices) {
;
}
};
struct LeModel {
std::string name;
std::string plotKey;
WiFiModel* model;
LeModel(const std::string& name, const std::string& plotKey, WiFiModel* model) : name(name), plotKey(plotKey), model(model) {;}
};
static void serialize(const K::Statistics<float>& stats, const LeWalk& walk, const LeModel& model, const int idx) {
const std::string file = Settings::fPathGFX + "/walks/data/" + model.name + "/" + walk.name + "_" + model.name + "_" + std::to_string(idx) + ".txt";
std::ofstream out(file);
for (const float f : stats.getAll()) {
out << f << "\n";
}
out.close();
}
static K::Statistics<float>* deserialize(const LeWalk& walk, const LeModel& model, const int idx) {
const std::string file = Settings::fPathGFX + "/walks/data/" + model.name + "/" + walk.name + "_" + model.name + "_" + std::to_string(idx) + ".txt";
K::Statistics<float>* res = new K::Statistics<float>();
std::ifstream inp(file);
while(inp) {
float f;
inp >> f;
res->add(f);
}
return res;
}
static std::vector<LeWalk> allWalks() {
return {
LeWalk("path1a", M_PI/2, Settings::path1a, Settings::GroundTruth::path1),
LeWalk("path1b", M_PI/2, Settings::path1b, Settings::GroundTruth::path1),
LeWalk("toni-all-1a", M_PI/2, Settings::path_toni_all_1a, Settings::GroundTruth::path1),
LeWalk("toni-all-1b", M_PI/2, Settings::path_toni_all_1b, Settings::GroundTruth::path1),
LeWalk("path2a", 0, Settings::path2a, Settings::GroundTruth::path2),
LeWalk("path2b", 0, Settings::path2b, Settings::GroundTruth::path2),
LeWalk("toni-all-2a", M_PI/2, Settings::path_toni_all_2a, Settings::GroundTruth::path2),
LeWalk("toni-all-2b", M_PI/2, Settings::path_toni_all_2b, Settings::GroundTruth::path2),
/////////LeWalk("toni-inst-1a", M_PI/2, Settings::path_toni_inst_1a, Settings::GroundTruth::path_toni_inst_1),
LeWalk("toni-inst-1b", M_PI/2, Settings::path_toni_inst_1b, Settings::GroundTruth::path_toni_inst_1),
LeWalk("toni-inst-2a", M_PI/2, Settings::path_toni_inst_2a, Settings::GroundTruth::path_toni_inst_2),
LeWalk("toni-inst-2b", M_PI/2, Settings::path_toni_inst_2b, Settings::GroundTruth::path_toni_inst_2),
LeWalk("toni-inst-3a", M_PI/2, Settings::path_toni_inst_3a, Settings::GroundTruth::path_toni_inst_3),
LeWalk("toni-inst-3b", M_PI/2, Settings::path_toni_inst_3b, Settings::GroundTruth::path_toni_inst_3),
};
}
static std::vector<LeModel> allModels(Floorplan::IndoorMap* map) {
WiFiModelFactory fac(map);
return {
LeModel("empiric", "\\noOptEmpiric{}", fac.loadXML(Settings::wifiAllFixed)),
LeModel("opt 1", "\\optParamsAllAP{}", fac.loadXML(Settings::wifiAllOptPar)),
LeModel("opt 2", "\\optParamsEachAP{}", fac.loadXML(Settings::wifiEachOptPar)),
LeModel("opt 3", "\\optParamsPosEachAP{}", fac.loadXML(Settings::wifiEachOptParPos)),
LeModel("per floor", "\\optPerFloor{}", fac.loadXML(Settings::wifiEachOptParPos_multimodel)),
LeModel("per bbox", "\\optPerRegion{}", fac.loadXML(Settings::wifiEachOptParPos_perBBox)),
};
}
static constexpr int numRepeats = 25;
/** create GFX for all previously walked parts */
static void walkEverythingBuildStats(Floorplan::IndoorMap* map) {
const std::vector<LeWalk> walks = allWalks();
const std::vector<LeModel> models = allModels(map);
PlotErrFunc* pefAll = new PlotErrFunc();
pefAll->setYRange(0, 90, 5);
pefAll->getPlot().getAxisY().setRange(0, 90);
pefAll->getPlot().getAxisY().setTicsStep({0, 25, 50, 75, 90});
pefAll->getPlot().getAxisX().setRange(0, 15);
for (const LeModel& mdl : models) {
K::Statistics<float>* modelStatsAvg = new K::Statistics<float>();
K::Statistics<float>* modelStatsMed = new K::Statistics<float>();
K::Statistics<float>* modelStatsSingle = new K::Statistics<float>();
pefAll->add(mdl.plotKey, modelStatsSingle);
int numStuck = 0;
int numTotal = 0;
std::cout << "model " << mdl.name << std::endl;
// ... to perform every walk...
for (const LeWalk& walk : walks) {
int numStuckWalk = 0;
int numTotalWalk = 0;
// stats for all runs of one walk
K::Statistics<float> walkStatsAvg;
for (int i = 0; i < 75; ++i) {
++numTotal;
++numTotalWalk;
K::Statistics<float>* walkStats = deserialize(walk, mdl, i);
//if (walkStats->getMedian() < 15) {
if (walkStats->getQuantile(0.75) < 20) {
//modelStatsSingle->add(*walkStats);
} else {
++numStuck;
++numStuckWalk;
}
modelStatsSingle->add(*walkStats);
walkStatsAvg.add(*walkStats);
}
if (modelStatsSingle->getCount() > 0) {
pefAll->plot();
}
std::cout << "|" << walk.name << "(" << walkStatsAvg.getMedian() << "@" << (numStuckWalk*100/numTotalWalk) << "%)\t";
}
std::cout << " | OVERALL:" << "(" << modelStatsSingle->getMedian() << "@" << (numStuck*100/numTotal) << "%)" << std::endl;
sleep(1);
}
pefAll->getGP().setTerminal("epslatex", K::GnuplotSize(8.6, 3.7));
pefAll->getGP().setOutput(Settings::fPathGFX + "/overall-system-error.tex");
pefAll->writePlotToFile(Settings::fPathGFX + "/overall-system-error.gp");
pefAll->getPlot().getMargin().set(4, 0.2, 0.1, 1.8);
pefAll->getPlot().setStringMod(new K::GnuplotStringModLaTeX());
pefAll->getPlot().getKey().setVisible(true);
pefAll->getPlot().getKey().setPosition(K::GnuplotKey::Hor::RIGHT, K::GnuplotKey::Ver::BOTTOM);
pefAll->getPlot().getKey().setWidthIncrement(7);
pefAll->getPlot().getAxisX().setTicsLabelFormat("%h m");
pefAll->getPlot().getAxisX().setRange(0, 22);
pefAll->getPlot().getAxisX().setLabel("");
pefAll->getPlot().getAxisY().setLabel("filter updates (%)");
pefAll->getPlot().getAxisY().setLabelOffset(3.0, 0);
pefAll->plot();
sleep(100);
}
/** perform all walks and write them to file */
static void walkEverything(Floorplan::IndoorMap* map) {
const std::vector<LeWalk> walks = allWalks();
const std::vector<LeModel> models = allModels(map);
PlotErrFunc* pefAll = new PlotErrFunc();
// use every model ...
for (const LeModel& mdl : models) {
K::Statistics<float>* modelStatsSingle = new K::Statistics<float>();
pefAll->add(mdl.name, modelStatsSingle);
// ... to perform every walk...
for (const LeWalk& walk : walks) {
//K::Statistics<float> curWalkRepeatStatsAvg;
//K::Statistics<float> curWalkRepeatStatsMed;
// ... several times
//#pragma omp parallel for num_threads(2)
for (int i = numRepeats*2; i < numRepeats*3; ++i) {
EvalWalk ew(map);
ew.walkName = walk.name + " - " + mdl.name + " - " + std::to_string(i);
// get ground-truth
ew.absHead = walk.absHead;
ew.groundTruth = FloorplanHelper::getGroundTruth(map, walk.gtIndices);
// eval
std::unique_ptr<PFEval> eval = std::unique_ptr<PFEval>( new PFEval(ew.grid, *mdl.model, ew.em) );
ew.pf->setEvaluation( std::move(eval) );
// data-file
ew.reader.open(walk.walkFile);
ew.groundTruthLive = ew.reader.getGroundTruth(map, walk.gtIndices);
ew.player.setReader(&ew.reader);
ew.player.setListener(&ew);
ew.player.start();
// wait for completion
ew.player.join();
// write plots
ew.writeToFile();
// add every single error for each timestamp to the overall model error
modelStatsSingle->reset();
modelStatsSingle->add(ew.statsErr);
// export this walks's statistics
serialize(ew.statsErr, walk, mdl, i);
pefAll->plot();
}
// all repeats done
const std::string walkname = walk.name + " - " + mdl.name;
std::cout << "walk result for " << walkname << std::endl;
//std::cout << "\t" << curWalkRepeatStatsAvg.asString() << std::endl;
//std::cout << "\t" << curWalkRepeatStatsMed.asString() << std::endl;
std::cout << std::endl;
//sleep(1);
}
// all walks for one model done
std::cout << "MODEL RESULTS for " << mdl.name << std::endl;
//std::cout << "\t" << modelStatsAvg->asString() << std::endl;
//std::cout << "\t" << modelStatsMed->asString() << std::endl;
std::cout << std::endl;
std::cout << std::endl;
std::cout << std::endl;
sleep(2);
}
}
void walk1() {
// path1
// absHead = M_PI/2;
// const std::string path = Settings::path1b;
// const std::vector<int> pathPoints = Settings::GroundTruth::path1;
// path2
// absHead = 0;
// const std::string path = Settings::path2b;
// const std::vector<int> pathPoints = Settings::GroundTruth::path2;
// path_toni_inst_2
absHead = M_PI;
const std::string path = Settings::path_toni_inst_2b;
const std::vector<int> pathPoints = Settings::GroundTruth::path_toni_inst_2;
runName = "";
// get ground-truth
groundTruth = FloorplanHelper::getGroundTruth(map, pathPoints);
// wifi model
//WiFiModelLogDistCeiling wifiModel(map);
//wifiModel.loadXML(Settings::wifiAllFixed);
//wifiModel.loadXML(Settings::wifiEachOptParPos);
//WiFiModelPerFloor wifiModel(map);
//wifiModel.loadXML(Settings::wifiEachOptParPos_multimodel);
WiFiModelPerBBox wifiModel(map);
wifiModel.loadXML(Settings::wifiEachOptParPos_perBBox);
// eval
std::unique_ptr<PFEval> eval = std::unique_ptr<PFEval>( new PFEval(grid, wifiModel, em) );
pf->setEvaluation( std::move(eval) );
// data-file
reader.open(path);
groundTruthLive = reader.getGroundTruth(map, pathPoints);
player.setReader(&reader);
player.setListener(this);
player.start();
// wait for completion
player.join();
}
virtual void onGyroscope(const Timestamp ts, const GyroscopeData data) override {
const float delta_rad = turnDetect.addGyroscope(ts, data);
curCtrl.turnSinceLastTransition_rad += delta_rad;
}
virtual void onAccelerometer(const Timestamp ts, const AccelerometerData data) override {
turnDetect.addAccelerometer(ts, data);
const bool step = stepDetect.add(ts, data);
if (step) {
++curCtrl.numStepsSinceLastTransition;
}
gotSensorData(ts);
actDetect.add(ts, data);
}
virtual void onGravity(const Timestamp ts, const GravityData data) override {
;
}
virtual void onWiFi(const Timestamp ts, const WiFiMeasurements data) override {
curObs.wifi = data;
//curObs.wifi = WiFiMeasurements::mix(curObs.wifi, data);
#ifdef PLOT_WIFI
plotWifi.add(Settings::WiFiModel::vg_eval.group(data));
plotWifi.plot();
#endif
}
virtual void onBarometer(const Timestamp ts, const BarometerData data) override {
actDetect.add(ts, data);
curCtrl.activityNew = actDetect.get();
curObs.activityNew = actDetect.get();
}
virtual void onGPS(const Timestamp ts, const GPSData data) override {
curObs.gps = data;
}
virtual void onCompass(const Timestamp ts, const CompassData data) override {
const float newAzimuth =- data.azimuth + M_PI/2; // oriented towards north for our map
const float newAzimuth_safe = Angle::makeSafe_2PI(newAzimuth);
const float diff = Angle::getSignedDiffRAD_2PI(curCtrl.compassAzimuth_rad, newAzimuth_safe);
curCtrl.compassAzimuth_rad += diff * 0.01;
curCtrl.compassAzimuth_rad = Angle::makeSafe_2PI(curCtrl.compassAzimuth_rad);
curObs.compassAzimuth_rad = curCtrl.compassAzimuth_rad;
//curCtrl.compassAzimuth_rad = curCtrl.compassAzimuth_rad * 0.99 + newAzimuth * 0.01;
}
private:
/** called when any sensor has received new data */
void gotSensorData(const Timestamp ts) {
curObs.currentTime = ts;
filterUpdateIfNeeded();
}
/** check whether its time for a filter update, and if so, execute the update and return true */
bool filterUpdateIfNeeded() {
static float avgSum = 0;
static int avgCount = 0;
// fixed update rate based on incoming sensor data
// allows working with live data and faster for offline data
const Timestamp diff = curObs.currentTime - lastTransition;
if (diff >= Settings::Filter::updateEvery) {
// as the difference is slightly above the 500ms, calculate the error and incorporate it into the next one
const Timestamp err = diff - Settings::Filter::updateEvery;
lastTransition = curObs.currentTime - err;
const Timestamp ts1 = Timestamp::fromUnixTime();
filterUpdate();
const Timestamp ts2 = Timestamp::fromUnixTime();
const Timestamp tsDiff = ts2-ts1;
//const QString filterTime = QString::number(tsDiff.ms());
//avgSum += tsDiff.ms(); ++avgCount;
//Log::add("xxx", "ts:" + std::to_string(curObs.currentTime.ms()) + " avg:" + std::to_string(avgSum/avgCount));
return true;
} else {
return false;
}
}
K::Statistics<float> statsErr;
int updateCount = 0;
int getNumFHWSAPs(const WiFiMeasurements& mes) {
std::unordered_set<std::string> set;
for (const WiFiMeasurement& m : mes.entries) {
std::string mac = m.getAP().getMAC().asString();
mac.back() = '0';
set.insert(mac);
}
return set.size();
}
void writeToFile() {
std::string path = Settings::fPathGFX;
std::string base = path + "/walks/" + "walk-" + walkName;
#ifdef PLOT_LIVE
plotty.gp << "unset arrow 1\n";
plotty.gp << "unset arrow 2\n";
plotty.gp << "unset colorbox\n";
plotty.gp << "unset border\n";
plotty.gp << "set view equal xy\n";
plotty.splot.getView().setCamera(74,30);
plotty.splot.getView().setScaleAll(3.5);
plotty.splot.getAxisX().setTicsVisible(false);
plotty.splot.getAxisY().setTicsVisible(false);
plotty.splot.getAxisZ().setTicsVisible(false);
plotty.particles.clear();
plotty.gp.setTerminal("epslatex", K::GnuplotSize(8.6, 4.5));
plotty.gp.setOutput(base + "-map.tex");
plotty.writeCodeTo(base + "-map.gp");
plotty.plot();
#endif
#ifdef PLOT_ERROR_FUNC
pef.getPlot().getMargin().set(4, 0.2, 0.1, 2.0);
pef.getGP().setTerminal("epslatex", K::GnuplotSize(8.6, 3.0));
pef.getGP().setOutput(base + "-error-cum.tex");
pef.writePlotToFile(base + "-error-cum.gp");
pef.plot();
#endif
#ifdef PLOT_ERROR_TIME
pet.getPlot().getMargin().set(4, 0.2, 0.1, 2.0);
pet.getGP().setTerminal("epslatex", K::GnuplotSize(8.6, 3.0));
pet.getGP().setOutput(base + "-error-time.tex");
pet.writePlotToFile(base + "-error-time.gp");
pet.plot();
#endif
}
/** perform a filter-update (called from a background-loop) */
void filterUpdate() {
++updateCount;
MyControl ctrlCopy = curCtrl;
//static float absHead = relHeadingOffset;
absHead += ctrlCopy.turnSinceLastTransition_rad;
//lastEst = curEst;
curEst = pf->update(&curCtrl, curObs);
const Point3 curGT = groundTruthLive.get(lastTransition);
// start the error-over-time plot after some filter updates
if (updateCount > 12) {
// error between ground-truth and estimation
const float estRealErr = curEst.position.inMeter().getDistance(curGT);
statsErr.add(estRealErr);
#ifdef PLOT_ERROR_FUNC
pef.showMarkers(true, true);
pef.clear();
pef.add("", &statsErr);
#endif
#ifdef PLOT_ERROR_TIME
// timed error
pet.addErr(lastTransition, estRealErr);
pet.addB(lastTransition, getNumFHWSAPs(curObs.wifi));
#endif
#ifdef PLOT_LIVE
// update estimated path
const K::GnuplotPoint3 p3(curEst.position.x_cm, curEst.position.y_cm, curEst.position.z_cm);
plotty.pathEst.add(p3/100);
#endif
}
// plot
static int cnt = 0;
if (++cnt % PLOT_UPDATE_STEP == 0) {
std::cout << statsErr.asString() << std::endl;
#ifdef PLOT_LIVE
// estimation and ground-truth
plotty.setCurEst(curEst.position.inMeter());
plotty.setGroundTruth(curGT);
// show particles
float maxWeight = 0;
float minWeight = 99;
plotty.particles.clear();
for (int i = 0; i < pf->getParticles().size(); i += 10) {
const auto p = pf->getParticles()[i];
const K::GnuplotPoint3 p3(p.state.position.x_cm, p.state.position.y_cm, p.state.position.z_cm);
plotty.particles.add(p3/100, p.weight);
if (p.weight > maxWeight) {maxWeight = p.weight;}
if (p.weight < minWeight) {minWeight = p.weight;}
}
plotty.gp << "set cbrange [" << minWeight << ":" << maxWeight << "] \n";
// show ground-truth
plotty.pathReal.clear();
for (const Point3 pt : groundTruth) {
plotty.pathReal.add(K::GnuplotPoint3(pt.x, pt.y, pt.z));
}
std::string title =
" time " + std::to_string(curObs.currentTime.sec()) +
" steps: " + std::to_string(ctrlCopy.numStepsSinceLastTransition) +
" turn: " + std::to_string(ctrlCopy.turnSinceLastTransition_rad) +
" APs: " + std::to_string(curObs.wifi.entries.size()) +
" Act: " + std::to_string((int)curCtrl.activityNew) +
" " + walkName;
plotty.setTitle(title);
// relative heading and compass
{
Point2 cen(0.1, 0.9);
Point2 dir(std::cos(absHead), std::sin(absHead));
Point2 arr = cen + dir * 0.1;
plotty.gp << "set arrow 1 from screen " << cen.x << "," << cen.y << " to screen " << arr.x << "," << arr.y << "\n";
dir = Point2(std::cos(ctrlCopy.compassAzimuth_rad), std::sin(ctrlCopy.compassAzimuth_rad));
arr = cen + dir * 0.05;
plotty.gp << "set arrow 2 from screen " << cen.x << "," << cen.y << " to screen " << arr.x << "," << arr.y << "\n";
}
#endif
#ifdef PLOT_LIVE
plotty.plot();
#endif
#ifdef PLOT_ERROR_TIME
pet.plot();
#endif
#ifdef PLOT_ERROR_FUNC
pef.plot();
#endif
}
//std::this_thread::sleep_for(std::chrono::milliseconds(5));
curCtrl.resetAfterTransition();
// const MyGridNode* node = grid->getNodePtrFor(curEst.position);
// if (node) {
// try {
// pathToDest = trans->modDestination.getShortestPath(*node);
// } catch (...) {;}
// }
// mainController->getMapView()->showGridImportance();
}
};
#endif // EVALWALK_H