This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
OTHER2017/pf/EvalWalk.h
2017-04-01 09:13:45 +02:00

309 lines
9.4 KiB
C++

#ifndef EVALWALK_H
#define EVALWALK_H
#include <KLib/math/filter/particles/ParticleFilter.h>
#include <KLib/math/filter/particles/ParticleFilterEvaluation.h>
#include <KLib/math/filter/particles/ParticleFilterInitializer.h>
#include <KLib/math/filter/particles/ParticleFilterTransition.h>
#include <KLib/math/filter/particles/estimation/ParticleFilterEstimationWeightedAverage.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingSimple.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingPercent.h>
#include "../PlotErrFunc.h"
#include <thread>
#include "Indoor/sensors/radio/setup/WiFiOptimizer.h"
#include "Indoor/sensors/radio/setup/WiFiFingerprint.h"
#include "Indoor/sensors/radio/setup/WiFiFingerprints.h"
#include "Indoor/sensors/radio/setup/WiFiOptimizer.h"
#include "Indoor/sensors/radio/setup/WiFiOptimizerLogDistCeiling.h"
#include "Indoor/sensors/radio/VAPGrouper.h"
#include "Indoor/sensors/imu/StepDetection.h"
#include "Indoor/sensors/imu/TurnDetection.h"
#include "Indoor/floorplan/v2/Floorplan.h"
#include "Indoor/floorplan/v2/FloorplanReader.h"
#include "Indoor/floorplan/v2/FloorplanHelper.h"
#include "Indoor/floorplan/v2/FloorplanCeilings.h"
#include "Indoor/sensors/radio/model/WiFiModelLogDistCeiling.h"
#include "Indoor/sensors/offline/FileReader.h"
#include "../Helper.h"
#include "PF.h"
#include <Indoor/sensors/offline/FilePlayer.h>
#include <Indoor/sensors/offline/FileReader.h>
#include <Indoor/sensors/offline/Listener.h>
class EvalWalk : public Offline::Listener {
Grid<MyGridNode>* grid;
K::ParticleFilter<MyState, MyControl, MyObservation>* pf;
std::string runName;
WiFiModelLogDistCeiling wifiModel;
Plotty plotty;
Offline::FileReader reader;
Offline::FilePlayer player;
Offline::FileReader::GroundTruth groundTruthLive;
Timestamp lastTransition;
MyObservation curObs;
MyControl curCtrl;
MyState curEst;
StepDetection stepDetect;
TurnDetection turnDetect;
std::vector<Point3> groundTruth;
Floorplan::IndoorMap* map;
public:
EvalWalk(Floorplan::IndoorMap* map) : wifiModel(map), plotty(map), map(map) {
const std::string saveFile = Settings::pathData + "/grid.dat";
grid = new Grid<MyGridNode>(Settings::Grid::gridSize_cm);
plotty.buildFloorplan();
// deserialize grid
std::ifstream inp(saveFile, std::ofstream::binary);
if (inp) {
grid->read(inp);
inp.close();
} else {
// build the grid
GridFactory<MyGridNode> gf(*grid);
gf.build(map);
Importance::addImportance(*grid);
std::ofstream out(saveFile, std::ofstream::binary);
grid->write(out);
out.close();
}
pf = new K::ParticleFilter<MyState, MyControl, MyObservation>( Settings::numParticles, std::unique_ptr<PFInit>(new PFInit(grid)) );
// TODO: flexible model
wifiModel.loadAPs(map, Settings::WiFiModel::TXP, Settings::WiFiModel::EXP, Settings::WiFiModel::WAF, false);
std::unique_ptr<PFEval> eval = std::unique_ptr<PFEval>( new PFEval(grid, wifiModel) );
pf->setEvaluation( std::move(eval) );
wifiModel.saveXML("/tmp/test.xml");
wifiModel.loadXML("/tmp/test.xml");
// resampling step?
pf->setNEffThreshold(0.5);
//pf->setResampling( std::unique_ptr<K::ParticleFilterResamplingSimple<MyState>>(new K::ParticleFilterResamplingSimple<MyState>()) );
pf->setResampling( std::unique_ptr<K::ParticleFilterResamplingPercent<MyState>>(new K::ParticleFilterResamplingPercent<MyState>(0.10)) );
// state estimation step
pf->setEstimation( std::unique_ptr<K::ParticleFilterEstimationWeightedAverage<MyState>>(new K::ParticleFilterEstimationWeightedAverage<MyState>()));
//pf->setEstimation( std::unique_ptr<K::ParticleFilterEstimationRegionalWeightedAverage<MyState>>(new K::ParticleFilterEstimationRegionalWeightedAverage<MyState>()));
//pf->setEstimation( std::unique_ptr<K::ParticleFilterEstimationOrderedWeightedAverage<MyState>>(new K::ParticleFilterEstimationOrderedWeightedAverage<MyState>(0.50f)));
}
void walk1() {
runName = "path2_forward_simple";
std::string path = Settings::path1a;
groundTruth = FloorplanHelper::getGroundTruth(map, Settings::GroundTruth::path1);
//GridWalkSimpleControl<MyGridNode>* walk = new GridWalkSimpleControl<MyGridNode>();
pf->setTransition( std::unique_ptr<PFTrans>( new PFTrans(grid)) );
reader.open(path);
groundTruthLive = reader.getGroundTruth(map, Settings::GroundTruth::path1);
player.setReader(&reader);
player.setListener(this);
player.start();
// wait for completion
player.join();
}
virtual void onGyroscope(const Timestamp ts, const GyroscopeData data) override {
const float delta_rad = turnDetect.addGyroscope(ts, data);
curCtrl.turnSinceLastTransition_rad += delta_rad;
}
virtual void onAccelerometer(const Timestamp ts, const AccelerometerData data) override {
turnDetect.addAccelerometer(ts, data);
const bool step = stepDetect.add(ts, data);
if (step) {
++curCtrl.numStepsSinceLastTransition;
}
gotSensorData(ts);
}
virtual void onGravity(const Timestamp ts, const GravityData data) override {
;
}
virtual void onWiFi(const Timestamp ts, const WiFiMeasurements data) override {
std::cout << "WIFI" << std::endl;
curObs.wifi = data;
}
virtual void onBarometer(const Timestamp ts, const BarometerData data) override {
;
}
virtual void onGPS(const Timestamp ts, const GPSData data) override {
curObs.gps = data;
}
virtual void onCompass(const Timestamp ts, const CompassData data) override {
const float newAzimuth =- data.azimuth + M_PI/2; // oriented towards north for our map
const float newAzimuth_safe = Angle::makeSafe_2PI(newAzimuth);
const float diff = Angle::getSignedDiffRAD_2PI(curCtrl.compassAzimuth_rad, newAzimuth_safe);
curCtrl.compassAzimuth_rad += diff * 0.01;
curCtrl.compassAzimuth_rad = Angle::makeSafe_2PI(curCtrl.compassAzimuth_rad);
//curCtrl.compassAzimuth_rad = curCtrl.compassAzimuth_rad * 0.99 + newAzimuth * 0.01;
}
private:
/** called when any sensor has received new data */
void gotSensorData(const Timestamp ts) {
curObs.currentTime = ts;
filterUpdateIfNeeded();
}
/** check whether its time for a filter update, and if so, execute the update and return true */
bool filterUpdateIfNeeded() {
static float avgSum = 0;
static int avgCount = 0;
// fixed update rate based on incoming sensor data
// allows working with live data and faster for offline data
const Timestamp diff = curObs.currentTime - lastTransition;
if (diff >= Settings::Filter::updateEvery) {
// as the difference is slightly above the 500ms, calculate the error and incorporate it into the next one
const Timestamp err = diff - Settings::Filter::updateEvery;
lastTransition = curObs.currentTime - err;
const Timestamp ts1 = Timestamp::fromUnixTime();
filterUpdate();
const Timestamp ts2 = Timestamp::fromUnixTime();
const Timestamp tsDiff = ts2-ts1;
//const QString filterTime = QString::number(tsDiff.ms());
//avgSum += tsDiff.ms(); ++avgCount;
//Log::add("xxx", "ts:" + std::to_string(curObs.currentTime.ms()) + " avg:" + std::to_string(avgSum/avgCount));
return true;
} else {
return false;
}
}
K::Statistics<float> statsErr;
/** perform a filter-update (called from a background-loop) */
void filterUpdate() {
static PlotErrFunc pef("\\small{error (m)}", "\\small{updates (\\%)}");
std::cout << "update" << std::endl;
MyControl ctrlCopy = curCtrl;
static float absHead = M_PI/2; absHead += ctrlCopy.turnSinceLastTransition_rad;
//lastEst = curEst;
curEst = pf->update(&curCtrl, curObs);
const Point3 curGT = groundTruthLive.get(lastTransition);
plotty.setCurEst(curEst.position.inMeter());
plotty.setGroundTruth(curGT);
// error between ground-truth and estimation
const float estRealErr = curEst.position.inMeter().getDistance(curGT);
statsErr.add(estRealErr);
pef.clear();
pef.add("", statsErr);
pef.plot();
std::cout << statsErr.asString() << std::endl;
const K::GnuplotPoint3 p3(curEst.position.x_cm, curEst.position.y_cm, curEst.position.z_cm);
plotty.pathEst.add(p3/100);
plotty.particles.clear();
for (const auto p : pf->getParticles()) {
const K::GnuplotPoint3 p3(p.state.position.x_cm, p.state.position.y_cm, p.state.position.z_cm);
plotty.particles.add(p3/100);
}
// GT
plotty.pathReal.clear();
for (const Point3 pt : groundTruth) {
plotty.pathReal.add(K::GnuplotPoint3(pt.x, pt.y, pt.z));
}
std::string title =
" time " + std::to_string(curObs.currentTime.sec()) +
" steps: " + std::to_string(ctrlCopy.numStepsSinceLastTransition) +
" turn: " + std::to_string(ctrlCopy.turnSinceLastTransition_rad);
plotty.setTitle(title);
{
Point2 cen(0.1, 0.9);
Point2 dir(std::cos(absHead), std::sin(absHead));
Point2 arr = cen + dir * 0.1;
plotty.gp << "set arrow 1 from screen " << cen.x << "," << cen.y << " to screen " << arr.x << "," << arr.y << "\n";
dir = Point2(std::cos(ctrlCopy.compassAzimuth_rad), std::sin(ctrlCopy.compassAzimuth_rad));
arr = cen + dir * 0.05;
plotty.gp << "set arrow 2 from screen " << cen.x << "," << cen.y << " to screen " << arr.x << "," << arr.y << "\n";
}
// plot
plotty.plot();
std::this_thread::sleep_for(std::chrono::milliseconds(30));
curCtrl.resetAfterTransition();
// const MyGridNode* node = grid->getNodePtrFor(curEst.position);
// if (node) {
// try {
// pathToDest = trans->modDestination.getShortestPath(*node);
// } catch (...) {;}
// }
// mainController->getMapView()->showGridImportance();
}
};
#endif // EVALWALK_H