This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
OTHER2017/pf/PF.h
2017-04-18 18:03:31 +02:00

415 lines
11 KiB
C++

#ifndef PF_H
#define PF_H
#include <KLib/math/filter/particles/ParticleFilter.h>
#include <KLib/math/filter/particles/estimation/ParticleFilterEstimationWeightedAverage.h>
#include <KLib/math/filter/particles/estimation/ParticleFilterEstimationOrderedWeightedAverage.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingSimple.h>
#include <KLib/math/filter/particles/resampling/ParticleFilterResamplingPercent.h>
#include <Indoor/sensors/radio/WiFiProbabilityFree.h>
#include <Indoor/sensors/radio/model/WiFiModelLogDistCeiling.h>
#include <Indoor/sensors/radio/WiFiProbabilityFree.h>
#include <Indoor/sensors/radio/WiFiQualityAnalyzer.h>
#include <Indoor/sensors/gps/GPSData.h>
#include <Indoor/sensors/gps/GPSProbability.h>
#include <Indoor/sensors/activity/Activity.h>
#include <Indoor/grid/walk/v2/GridWalker.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleHeadingControl.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleNodeImportance.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleFavorZ.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleActivityControl.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleFollowDestination.h>
#include <Indoor/grid/walk/v2/modules/WalkModuleAbsoluteHeadingControl.h>
#include "../Settings.h"
struct MyGridNode : public GridNode, public GridPoint {//, public WiFiGridNode<30> {
float navImportance;
float getNavImportance() const { return navImportance; }
float walkImportance;
float getWalkImportance() const { return walkImportance; }
/** empty ctor */
MyGridNode() : GridPoint(-1, -1, -1) {;}
/** ctor */
MyGridNode(const int x_cm, const int y_cm, const int z_cm) : GridPoint(x_cm, y_cm, z_cm) {;}
static void staticDeserialize(std::istream& inp) {
//WiFiGridNode::staticDeserialize(inp);
}
static void staticSerialize(std::ostream& out) {
//WiFiGridNode::staticSerialize(out);
}
};
struct MyState : public WalkState, public WalkStateFavorZ, public WalkStateHeading {
/** ctor */
MyState(const int x_cm, const int y_cm, const int z_cm) : WalkState(GridPoint(x_cm, y_cm, z_cm)), WalkStateHeading(Heading(0), 0) {
;
}
MyState() : WalkState(GridPoint()), WalkStateHeading(Heading(0), 0) {
;
}
MyState& operator += (const MyState& o) {
position += o.position;
return *this;
}
MyState& operator /= (const float val) {
position /= val;
return *this;
}
MyState operator * (const float val) const {
MyState copy = *this;
copy.position = copy.position * val;
return copy;
}
};
/** observed sensor data */
struct MyObservation {
/** wifi measurements */
WiFiMeasurements wifi;
/** gps measurements */
GPSData gps;
/** absolute heading in radians */
float compassAzimuth_rad = 0;
// TODO: switch to a general activity enum/detector for barometer + accelerometer + ...?
/** detected activity */
ActivityButterPressure::Activity activity;
/** time of evaluation */
Timestamp currentTime;
};
/** (observed) control data */
struct MyControl {
/** turn angle (in radians) since the last transition */
float turnSinceLastTransition_rad = 0;
/** number of steps since the last transition */
int numStepsSinceLastTransition = 0;
/** absolute heading in radians */
float compassAzimuth_rad = 0;
// TODO: switch to a general activity enum/detector using barometer + accelerometer?
/** currently detected activity */
ActivityButterPressure::Activity activity = ActivityButterPressure::Activity::STAY;
Activity activityNew;
/** reset the control-data after each transition */
void resetAfterTransition() {
turnSinceLastTransition_rad = 0;
numStepsSinceLastTransition = 0;
}
};
class PFInit : public K::ParticleFilterInitializer<MyState> {
private:
Grid<MyGridNode>* grid;
public:
PFInit(Grid<MyGridNode>* grid) : grid(grid) {
}
virtual void initialize(std::vector<K::Particle<MyState>>& particles) override {
std::minstd_rand gen;
std::uniform_int_distribution<int> distIdx(0, grid->getNumNodes()-1);
std::uniform_real_distribution<float> distHead(0, 2*M_PI);
for (K::Particle<MyState>& p : particles) {
const int idx = distIdx(gen);
const MyGridNode& node = (*grid)[idx];
p.state.position = node; // random position
p.state.heading.direction = Heading(distHead(gen)); // random heading
p.weight = 1.0 / particles.size(); // equal weight
}
}
};
class PFTrans : public K::ParticleFilterTransition<MyState, MyControl> {
public:
/** local, static control-data COPY */
MyControl ctrl;
Grid<MyGridNode>* grid;
GridWalker<MyGridNode, MyState> walker;
WalkModuleFavorZ<MyGridNode, MyState> modFavorZ;
WalkModuleNodeImportance<MyGridNode, MyState> modImportance;
WalkModuleFollowDestination<MyGridNode, MyState> modDestination;
WalkModuleActivityControl<MyGridNode, MyState, MyControl> modActivity;
WalkModuleHeadingControl<MyGridNode, MyState, MyControl> modRelHead;
WalkModuleAbsoluteHeadingControl<MyGridNode, MyState, MyControl> modAbsHead;
std::minstd_rand gen;
public:
PFTrans(Grid<MyGridNode>* grid) : grid(grid), modRelHead(&ctrl, Settings::IMU::turnSigma), modAbsHead(&ctrl, Settings::IMU::absHeadSigma), modDestination(*grid), modActivity(&ctrl) {
walker.addModule(&modRelHead);
//walker.addModule(&modAbsHead);
//walker.addModule(&modActivity);
//walker.addModule(&modFavorZ);
//walker.addModule(&modImportance);
// if (Settings::destination != GridPoint(0,0,0)) {
// //walker.addModule(&modDestination);
// modDestination.setDestination(grid->getNodeFor(Settings::destination));
// }
}
int numTrans = 0;
void transition(std::vector<K::Particle<MyState>>& particles, const MyControl* _ctrl) override {
++numTrans;
// local copy!! observation might be changed async outside!! (will really produces crashes!)
this->ctrl = *_ctrl;
((MyControl*)_ctrl)->resetAfterTransition();
std::normal_distribution<float> noise(0, Settings::IMU::stepSigma);
// std::normal_distribution<float> turnNoise (0, 0.2);
// std::uniform_real_distribution<float> initTurnNoise(-0.3, +0.3);
// std::uniform_real_distribution<float> initDistNoise(0.0, 0.5);
// sanity check
Assert::equal((int)particles.size(), Settings::numParticles, "number of particles does not match the settings!");
//for (K::Particle<MyState>& p : particles) {
//#pragma omp parallel for num_threads(3)
for (int i = 0; i < Settings::numParticles; ++i) {
//#pragma omp atomic
float dist_m = std::abs(ctrl.numStepsSinceLastTransition * Settings::IMU::stepLength + noise(gen));
K::Particle<MyState>& p = particles[i];
// first transitions: more variation as the state is unknown
if (numTrans < 50 || numTrans % 10 == 0) {
const MyGridNode* n = grid->getNodePtrFor(p.state.position);
std::normal_distribution<float> distTurn(0, 0.4);
for (int j = 0; j < 5; ++j) {
std::uniform_int_distribution<int> distIdx(0, n->getNumNeighbors()-1);
const int idx = distIdx(gen);
n = &(grid->getNeighbor(*n, idx));
}
p.state.position = *n;
if (numTrans < 50) {
p.state.heading.direction += distTurn(gen);
dist_m += 0.5;
}
}
//p.state.heading.direction += turnNoise(gen);
// "blur" the density by adjusting the weights
//p.weight = std::pow(p.weight, 0.4);
//p.weight = 1;
double prob = 1.0;
p.state = walker.getDestination(*grid, p.state, dist_m, prob);
p.weight *= prob; // grid-walk-probability
if (p.weight != p.weight) {
throw Exception("nan");
}
if (p.weight == 0) {
std::cout << "one particle weight is 0.0!" << std::endl;
//throw Exception("weight = 0.0");
}
}
// normalize
double weightSum = 0;
for (const auto& p : particles) {weightSum += p.weight;}
for (auto& p : particles) {p.weight /= weightSum;}
}
};
class PFEval : public K::ParticleFilterEvaluation<MyState, MyObservation> {
Grid<MyGridNode>* grid;
WiFiModel& wifiModel;
EarthMapping& em;
WiFiObserverFree wiFiProbability; // free-calculation
// smartphone is 1.3 meter above ground
const Point3 person = Point3(0,0,Settings::smartphoneAboveGround);
public:
PFEval(Grid<MyGridNode>* grid, WiFiModel& wifiModel, EarthMapping& em) :
grid(grid), wifiModel(wifiModel), em(em),
wiFiProbability(Settings::WiFiModel::sigma, wifiModel) { // WiFi free
}
double getAbsHead(const MyState& s, const MyObservation& obs) {
// compare the heading against the state's heading - the last error
const Heading stateHead = s.heading.direction;
const Heading obsHead(obs.compassAzimuth_rad);
// get the difference
const float angularDiff = obsHead.getDiffHalfRAD(stateHead);
double res = 0;
if (angularDiff > Angle::degToRad(90)) {res = 0.05;}
else if (angularDiff > Angle::degToRad(45)) {res = 0.25;}
else {res = 0.70;}
return res;
}
WiFiQualityAnalyzer wqa;
double evaluation(std::vector<K::Particle<MyState>>& particles, const MyObservation& _observation) override {
// local copy!! observation might be changed async outside!! (will really produces crashes!)
const MyObservation observation = _observation;
// vap-grouping
const int numAP1 = observation.wifi.entries.size();
WiFiMeasurements wifiObs = Settings::WiFiModel::vg_eval.group(_observation.wifi);
const int numAP2 = wifiObs.entries.size();
Log::add("Filter", "VAP: " + std::to_string(numAP1) + " -> " + std::to_string(numAP2));
wqa.add(wifiObs);
const float quality = wqa.getQuality();
// GPS
const GPSProbability gpsProb(em);
// sanity check
Assert::equal((int)particles.size(), Settings::numParticles, "number of particles does not match the settings!");
// use (0.9 * p) + (0.1 * (1-p)) for error cases
wiFiProbability.setUseError(false);
//#pragma omp parallel for num_threads(3)
for (int i = 0; i < Settings::numParticles; ++i) {
K::Particle<MyState>& p = particles[i];
// WiFi free
double pWiFi = wiFiProbability.getProbability(p.state.position.inMeter()+person, observation.currentTime, wifiObs);
double pWiFiMod = Distribution::Exponential<double>::getProbability(0.20, -std::log(pWiFi));
double pWiFiVeto = wiFiProbability.getVeto(p.state.position.inMeter()+person, observation.currentTime, wifiObs);
if (quality < 0.2) {
pWiFi = 1;
pWiFiVeto = 1;
std::cout << "disabling WiFi" << std::endl;
}
// WiFi grid
//const MyGridNode& node = grid->getNodeFor(p.state.position);
//const MyGridNode& node = grid->getNodeFor(p.state.position);
//const double pWiFi = wiFiProbability.getProbability(node, observation.currentTime, wifiObs);
//const double pStair = 1;//getStairProb(p, observation.activity);
const double pGPS = gpsProb.getProbability(p.state.position.inMeter(), observation.gps);
const double pAbsHead = getAbsHead(p.state, observation);
const double prob = pWiFi * pWiFiVeto;// * pAbsHead;
//GPS ERROR?!?!?! does it work without disabling wifi when gps is disabled?
if (pGPS != 1) {
int i = 0; (void) i;
}
// TESTING
//p.weight = std::pow(p.weight, 0.5);
p.weight *= prob; // NOTE: keeps the weight returned by the transition step!
//p.weight = prob; // does NOT keep the weights returned by the transition step
if (p.weight != p.weight) {
throw Exception("nan");
}
if (p.weight == 0) {
std::cout << "one particle weight is 0.0!" << std::endl;
// throw Exception("weight = 0.0");
}
}
return 0;
}
};
#endif // PF_H