TeX
This commit is contained in:
@@ -6,3 +6,7 @@ und optimierung durch einige referenzmessungen
|
||||
|
||||
floorplan wird für die navigation bzw orientierung des anwenders eh gebraucht
|
||||
dann kann man ihn auch gleich für ein bewegungsmodell nutzen
|
||||
|
||||
es sollte klar werden, dass es auch darum geht, effizient
|
||||
auf einem normalen smartphone lauffähig zu sein [passend zum journal]
|
||||
|
||||
|
||||
@@ -89,6 +89,8 @@
|
||||
{\em\optPerFloor{}} and {\em\optPerRegion{}} are just like \optParamsPosEachAP{} except that
|
||||
there are several sub-models that are optimized for one floor / region instead of the whole building.
|
||||
|
||||
\todo{grafik, die die regionen zeigt???}
|
||||
|
||||
Figure \ref{fig:wifiModelError} shows the optimization results for all strategies, which are as expected:
|
||||
The estimation error is indirectly proportional to the number of optimized parameters.
|
||||
However, even with {\em \optPerRegion{}} the maximal error is relatively high due to some locations that do
|
||||
@@ -165,33 +167,45 @@
|
||||
|
||||
\subsection{Location estimation error}
|
||||
|
||||
Using the optimized model setups and the measurements $\mRssiVec$ determined by scanning for nearby \docAPshort{}s,
|
||||
we can directly perform a location estimation by rewriting \refeq{eq:wifiProb}:
|
||||
\todo{übergang holprig}
|
||||
|
||||
%Using the optimized model setups and the measurements $\mRssiVec$ determined by scanning for nearby \docAPshort{}s,
|
||||
%we can directly perform a location estimation by rewriting \refeq{eq:wifiProb}:
|
||||
For each of the discussed optimization strategies we can now determine the resulting localization accuracy.
|
||||
The position within the building that best fits some signal strength measurements $\mRssiVec$ received by the smartphone
|
||||
is the one that maximizes $p(\mPosVec \mid \mRssiVec)$ and can be rewritten as:
|
||||
|
||||
\begin{equation}
|
||||
p(\mPosVec \mid \mRssiVec) =
|
||||
\frac{p(\mRssiVec \mid \mPosVec) p(\mPosVec)}{p(\mRssiVec)}
|
||||
\approx p(\mRssiVec \mid \mPosVec),\enskip
|
||||
\propto p(\mRssiVec \mid \mPosVec),\enskip
|
||||
p(\mPosVec) = p(\mRssiVec) = \text{const}
|
||||
.
|
||||
\label{eq:wifiBayes}
|
||||
\end{equation}
|
||||
|
||||
The pedestrian's current location $\mPosVec^*$ given $\mRssiVec$ satisfies
|
||||
Following \refeq{eq:wifiObs} and \refeq{eq:wifiProb}, the best
|
||||
location $\mPosVec^*$ given $\mRssiVec$ is the one that satisfies
|
||||
|
||||
\begin{equation}
|
||||
\mPosVec^* = \argmax_{\mPosVec}
|
||||
p(\mRssiVec \mid \mPosVec)
|
||||
.
|
||||
\prod_{\mRssi_{i} \in \mRssiVec{}}
|
||||
\mathcal{N}(\mRssi_i \mid \mu_{i,\mPosVec}, \sigma^2)
|
||||
\label{eq:bestWiFiPos}
|
||||
\end{equation}
|
||||
|
||||
where $\mu_{i,\mPosVec}$ is the signal strength for \docAP{} $i$
|
||||
at location $\mPosVec$ returned from the to-be-examined prediction model.
|
||||
For all comparisons we use a constant uncertainty $\sigma = $\SI{8}{\decibel}.
|
||||
|
||||
The quality of the estimated location is determined by comparing the estimation
|
||||
$\mPosVec^*$ with the pedestrian's ground truth at the time the scan $\mRssiVec$
|
||||
$\mPosVec^*$ with the pedestrian's ground truth position at the time the scan $\mRssiVec$
|
||||
has been received.
|
||||
|
||||
|
||||
|
||||
We therefore conducted 10 walks on 5 different paths within our building,
|
||||
each of which is defined by connecting several marker points at well known positions
|
||||
each of which is defined by connecting marker points at well known positions
|
||||
(see figure \ref{fig:allWalks}).
|
||||
Whenever the pedestrian reached such a marker, the current time was recorded.
|
||||
Due to constant walking speeds, the ground-truth for any timestamp can be approximated
|
||||
@@ -210,10 +224,6 @@
|
||||
}
|
||||
\end{figure}
|
||||
|
||||
To estimate the performance of the prediction models, we compare the position estimation
|
||||
for each \docWIFI{} measurement within the recorded paths (3756 \docAPshort{} scans in total)
|
||||
against the corresponding ground-truth, which indicates the absolute 3D error in meter.
|
||||
|
||||
\begin{figure}[b]
|
||||
\input{gfx/modelPerformance_meter.tex}
|
||||
\label{fig:modelPerformance}
|
||||
@@ -223,12 +233,17 @@
|
||||
}
|
||||
\end{figure}
|
||||
|
||||
As can be seen in figure \ref{fig:modelPerformance}, the quality of the location estimation
|
||||
directly scales with the quality of the signal strength prediction model.
|
||||
However, depending on the model, the maximal estimation error might increase (see \optParamsPosEachAP{}).
|
||||
%To estimate the overall performance of the prediction models, we compare the position estimation
|
||||
%for each \docWIFI{} measurement within the recorded paths (3756 \docAPshort{} scans in total)
|
||||
%against the corresponding ground-truth, which indicates the absolute 3D error in meter.
|
||||
The position estimation for each \docWIFI{} measurement within the recorded walks (3756 \docAPshort{} scans in total)
|
||||
is compared against its corresponding ground-truth, indicating the absolute 3D error.
|
||||
The resulting cumulative error distribution can be seen in figure \ref{fig:modelPerformance}.
|
||||
The quality of the location estimation directly scales with the quality of the signal strength prediction model.
|
||||
However, as discussed earlier, the maximal estimation error might increase for some setups.
|
||||
%
|
||||
This is either due to multimodalities, where more than one area is possible based on the recent
|
||||
\docWIFI{} observation, or optimization yields an overadaption where the average signal
|
||||
\docWIFI{} observation, or optimization yielded an overadaption where the average signal
|
||||
strength prediction error is small, but the maximum error is dramatically increased for some regions.
|
||||
|
||||
|
||||
@@ -247,7 +262,7 @@
|
||||
\end{figure}
|
||||
|
||||
Figure \ref{fig:wifiMultimodality} depicts aforementioned issues of multimodal (blue) or wrong (red) location
|
||||
estimations. Filtering (\refeq{eq:recursiveDensity}) thus is highly recommended as minor errors are compensated
|
||||
estimations. Filtering (\refeq{eq:recursiveDensity}) thus is highly recommended, as minor errors are compensated
|
||||
using other sensors and/or a movement model that prevents the estimation from leaping within the building.
|
||||
However, if wrong sensor values (red) are observed for longer time periods, even filtering will produce erroneous
|
||||
results and might get stranded (density is trapped e.g. within a room),
|
||||
@@ -255,7 +270,7 @@
|
||||
|
||||
|
||||
% -------------------------------- other distributions, unseen APs, etc -------------------------------- %
|
||||
|
||||
|
||||
To reduce the amount such of misclassifications, where other locations within the building are
|
||||
as likely as the pedestrians actual location, we examined various approaches.
|
||||
Unfortunately, none of which provided a viable enhancement under all conditions for the performed walks.
|
||||
@@ -379,15 +394,13 @@ die treppe richtung h.1.5 hochgehen und durch das wlan sehr sehr hoch gewichtet
|
||||
die mittelwert-estimation versagt hier
|
||||
|
||||
|
||||
\input{gfx/wifi-opt-error-hist-methods.tex}
|
||||
|
||||
\input{gfx/wifi-opt-error-hist-stair-outdoor.tex}
|
||||
outdoor hat insgesamt nicht all zu viel einfluss, da die meisten APs
|
||||
an den outdoor punkten kaum gesehen werden. auf einzelne APs kann
|
||||
der einfluss jedoch recht groß sein, siehe den fingerprint plot von
|
||||
dem einen ausgewählten AP
|
||||
|
||||
wenn noch zeit ist: wie aendert sich die model prediction wenn man z.B. nur die haelfte der referenzmessungen nimmt?
|
||||
% was ist das??
|
||||
%\input{gfx/wifi-opt-error-hist-methods.tex}
|
||||
%\input{gfx/wifi-opt-error-hist-stair-outdoor.tex}
|
||||
%outdoor hat insgesamt nicht all zu viel einfluss, da die meisten APs
|
||||
%an den outdoor punkten kaum gesehen werden. auf einzelne APs kann
|
||||
%der einfluss jedoch recht groß sein, siehe den fingerprint plot von
|
||||
%dem einen ausgewählten AP
|
||||
|
||||
|
||||
\todo{anfaenglich falsches heading ist gift, wegen rel. heading, weil sich dann alles verlaeuft. fix: anfaenglich große heading variation erlauben}
|
||||
|
||||
Reference in New Issue
Block a user