initial commit
This commit is contained in:
342
EvalCompareOpt.h
Normal file
342
EvalCompareOpt.h
Normal file
@@ -0,0 +1,342 @@
|
||||
#ifndef EVALCOMPAREOPT_H
|
||||
#define EVALCOMPAREOPT_H
|
||||
|
||||
#include "Indoor/sensors/radio/setup/WiFiOptimizer.h"
|
||||
#include "Indoor/sensors/radio/setup/WiFiFingerprint.h"
|
||||
#include "Indoor/sensors/radio/setup/WiFiFingerprints.h"
|
||||
|
||||
#include "Indoor/sensors/radio/setup/WiFiOptimizer.h"
|
||||
#include "Indoor/sensors/radio/setup/WiFiOptimizerLogDistCeiling.h"
|
||||
|
||||
#include "Indoor/sensors/radio/VAPGrouper.h"
|
||||
|
||||
#include "Indoor/floorplan/v2/Floorplan.h"
|
||||
#include "Indoor/floorplan/v2/FloorplanReader.h"
|
||||
#include "Indoor/floorplan/v2/FloorplanHelper.h"
|
||||
#include "Indoor/floorplan/v2/FloorplanCeilings.h"
|
||||
|
||||
#include "Indoor/sensors/radio/model/WiFiModelLogDistCeiling.h"
|
||||
|
||||
using APAtFloor = std::pair<Floorplan::AccessPoint*, Floorplan::Floor*>;
|
||||
|
||||
/**
|
||||
* compare different optimzation levels
|
||||
* fixed ap pos / fixed params
|
||||
* fixed ap pos / optimized params
|
||||
* optimized ap pos / optimized params [+/- WAF]
|
||||
*/
|
||||
class EvalCompareOpt {
|
||||
|
||||
protected:
|
||||
|
||||
Floorplan::IndoorMap* map;
|
||||
WiFiFingerprints* calib;
|
||||
VAPGrouper* vap;
|
||||
Floorplan::Ceilings ceilings;
|
||||
std::vector<APAtFloor> mapAPs;
|
||||
WiFiOptimizer::Base* base;
|
||||
|
||||
|
||||
/** ctor with map and fingerprints */
|
||||
EvalCompareOpt(const std::string& mapFile, const std::string& fpFile) {
|
||||
|
||||
// load floorplan
|
||||
map = Floorplan::Reader::readFromFile(mapFile);
|
||||
|
||||
// load fingerprints
|
||||
calib = new WiFiFingerprints(fpFile);
|
||||
|
||||
// some ceiling calculations
|
||||
ceilings = Floorplan::Ceilings(map);
|
||||
|
||||
// all APs within the map
|
||||
mapAPs = FloorplanHelper::getAPs(map);
|
||||
|
||||
// how to group VAPs
|
||||
vap = new VAPGrouper(VAPGrouper::Mode::LAST_MAC_DIGIT_TO_ZERO, VAPGrouper::Aggregation::AVERAGE);
|
||||
|
||||
// used to aggreagate fingerprints
|
||||
base = new WiFiOptimizer::Base(*vap);
|
||||
base->addFingerprints(*calib);
|
||||
|
||||
}
|
||||
|
||||
/** get the error for the given AP at the provided location */
|
||||
K::Statistics<float> analyzeErrorForAPs(const std::vector<WiFiOptimizer::LogDistCeiling::APParamsMAC>& aps) {
|
||||
|
||||
K::Statistics<float> statsAbs;
|
||||
|
||||
// process each AP
|
||||
for (const WiFiOptimizer::LogDistCeiling::APParamsMAC& ap : aps) {
|
||||
analyzeErrorForAP(ap, statsAbs);
|
||||
}
|
||||
|
||||
// done
|
||||
//std::cout << "overall error: " << std::endl << statsAbs.asString() << std::endl;
|
||||
return statsAbs;
|
||||
|
||||
}
|
||||
|
||||
/** get the error for the given AP at the provided location */
|
||||
void analyzeErrorForAP(const MACAddress& mac, const Point3 pos, const float txp, const float exp, const float waf, K::Statistics<float>& dstAbs) {
|
||||
|
||||
WiFiOptimizer::LogDistCeiling::APParams params;
|
||||
params.exp = exp;
|
||||
params.txp = txp;
|
||||
params.waf = waf;
|
||||
params.x = pos.x;
|
||||
params.y = pos.y;
|
||||
params.z = pos.z;
|
||||
|
||||
const WiFiOptimizer::LogDistCeiling::APParamsMAC ap(mac, params);
|
||||
|
||||
analyzeErrorForAP(ap, dstAbs);
|
||||
|
||||
}
|
||||
|
||||
/** get the error for the given AP at the provided location */
|
||||
void analyzeErrorForAP(const WiFiOptimizer::LogDistCeiling::APParamsMAC& ap, K::Statistics<float>& dstAbs) {
|
||||
|
||||
//
|
||||
const WiFiOptimizer::LogDistCeiling::APParams& params = ap.params;
|
||||
const MACAddress& mac = ap.mac;
|
||||
|
||||
// always using the same model
|
||||
WiFiModelLogDistCeiling model(map);
|
||||
model.addAP(mac, WiFiModelLogDistCeiling::APEntry(params.getPos(), params.txp, params.exp, params.waf), false);
|
||||
|
||||
// get all fingerprints for the given AP
|
||||
const std::vector<WiFiOptimizer::RSSIatPosition> entries = base->getFingerprintsFor(mac);
|
||||
|
||||
// stats
|
||||
K::Statistics<float> stats;
|
||||
|
||||
// process each fingerprint for this ap
|
||||
for (const WiFiOptimizer::RSSIatPosition& reading : entries) {
|
||||
|
||||
// get the model-estimation for the fingerprint's position
|
||||
const float rssiModel = model.getRSSI(mac, reading.pos_m);
|
||||
|
||||
// difference between estimation and measurement
|
||||
const float diff = std::abs(rssiModel - reading.rssi);
|
||||
|
||||
// adjust
|
||||
stats.add(std::abs(diff));
|
||||
dstAbs.add(std::abs(diff));
|
||||
|
||||
}
|
||||
|
||||
// show
|
||||
//std::cout << " --- " << mac.asString() << ": " << stats.asString() << std::endl;
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
/** fixed ap pos, fixed ap params */
|
||||
class EvalCompareOptAllFixed : public EvalCompareOpt {
|
||||
|
||||
private:
|
||||
|
||||
// looks good
|
||||
float txp = -40;
|
||||
float exp = 2.65;
|
||||
float waf = -6.5;
|
||||
|
||||
public:
|
||||
|
||||
EvalCompareOptAllFixed(const std::string& mapFile, const std::string& fpFile) : EvalCompareOpt(mapFile, fpFile) {
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** get the error when using the given 3 params for ALL aps */
|
||||
K::Statistics<float> getStatsAll(const float txp, const float exp, const float waf) {
|
||||
|
||||
// all access points with params
|
||||
std::vector<WiFiOptimizer::LogDistCeiling::APParamsMAC> aps;
|
||||
|
||||
// construct vector containing each AP within the map + add fixed parameters
|
||||
for (const APAtFloor& mapAP : mapAPs) {
|
||||
|
||||
WiFiOptimizer::LogDistCeiling::APParams params;
|
||||
params.exp = exp;
|
||||
params.txp = txp;
|
||||
params.waf = waf;
|
||||
params.x = mapAP.first->getPos(mapAP.second).x;
|
||||
params.y = mapAP.first->getPos(mapAP.second).y;
|
||||
params.z = mapAP.first->getPos(mapAP.second).z;
|
||||
|
||||
const MACAddress mac = MACAddress(mapAP.first->mac);
|
||||
|
||||
WiFiOptimizer::LogDistCeiling::APParamsMAC ap(mac, params);
|
||||
aps.push_back(ap);
|
||||
|
||||
}
|
||||
|
||||
return analyzeErrorForAPs(aps);
|
||||
|
||||
}
|
||||
|
||||
/** calculate error for fixed positions and fixed constants */
|
||||
void fixedPosFixedParamsForAll() {
|
||||
|
||||
// fire
|
||||
std::cout << "----------------------------------------------------" << std::endl;
|
||||
std::cout << "AP POS FROM MAP, FIXED TXP/EXP/WAF FOR ALL APS" << std::endl;
|
||||
std::cout << getStatsAll(txp, exp, waf).asString() << std::endl;
|
||||
std::cout << std::endl;
|
||||
|
||||
}
|
||||
|
||||
/** calculate error for fixed positions and optimized constants, but the same 3 for all APs */
|
||||
void fixedPosOptParamsForAll() {
|
||||
|
||||
auto func = [&] (const float* params) {
|
||||
return getStatsAll(params[0], params[1], params[2]).getAvg();
|
||||
};
|
||||
|
||||
// use simplex
|
||||
float params[3] = {-40, 2, -8};
|
||||
K::NumOptAlgoDownhillSimplex<float> opt(3);
|
||||
opt.setMaxIterations(50);
|
||||
opt.setNumRestarts(10);
|
||||
opt.calculateOptimum(func, params);
|
||||
|
||||
// use genetic
|
||||
// K::NumOptAlgoGenetic<float> opt(3);
|
||||
// opt.setPopulationSize(100);
|
||||
// opt.setMaxIterations(50);
|
||||
// opt.setValRange({1, 0.1, 0.2});
|
||||
// opt.setElitism(0.05f);
|
||||
// opt.setMutation(0.25);
|
||||
// opt.calculateOptimum(func, params);
|
||||
|
||||
std::cout << "----------------------------------------------------" << std::endl;
|
||||
std::cout << "AP POS FROM MAP, OPTIMIZING TXP/EXP/WAF: THE SAME FOR ALL APS" << std::endl;
|
||||
std::cout << "params: " << params[0] << "," << params[1] << "," << params[2] << std::endl;
|
||||
std::cout << getStatsAll(params[0], params[1], params[2]).asString() << std::endl;
|
||||
std::cout << std::endl;
|
||||
|
||||
}
|
||||
|
||||
/** calculate error for fixed positions and optimized constants, each AP on its own */
|
||||
void fixedPosOptParamsForEach() {
|
||||
|
||||
K::Statistics<float> _dstAbs;
|
||||
|
||||
// construct vector containing each AP within the map + add fixed parameters
|
||||
for (const APAtFloor& mapAP : mapAPs) {
|
||||
|
||||
// fixed
|
||||
const MACAddress mac(mapAP.first->mac);
|
||||
const Point3 pos = mapAP.first->getPos(mapAP.second);
|
||||
|
||||
// opt-func for one AP
|
||||
auto func = [&] (const float* params) {
|
||||
K::Statistics<float> dstAbs;
|
||||
analyzeErrorForAP(mac, pos, params[0], params[1], params[2], dstAbs);
|
||||
return dstAbs.getAvg();
|
||||
};
|
||||
|
||||
// use simplex
|
||||
float params[3] = {-40, 2, -8};
|
||||
K::NumOptAlgoDownhillSimplex<float> opt(3);
|
||||
opt.setMaxIterations(50);
|
||||
opt.setNumRestarts(10);
|
||||
opt.calculateOptimum(func, params);
|
||||
|
||||
// use genetic [usually not better!]
|
||||
// K::NumOptAlgoGenetic<float> opt(3);
|
||||
// opt.setPopulationSize(100);
|
||||
// opt.setMaxIterations(50);
|
||||
// opt.setValRange({1, 0.1, 0.2});
|
||||
// opt.setElitism(0.05f);
|
||||
// opt.setMutation(0.25);
|
||||
// opt.calculateOptimum(func, params);
|
||||
|
||||
// local stats
|
||||
K::Statistics<float> tmp;
|
||||
analyzeErrorForAP(mac, pos, params[0], params[1], params[2], tmp);
|
||||
|
||||
// adjust global error with the resulting params
|
||||
std::cout << "--" << mac.asString() << " params: " << params[0] << "," << params[1] << "," << params[2] << " err: " << tmp.getAvg() << std::endl;
|
||||
analyzeErrorForAP(mac, pos, params[0], params[1], params[2], _dstAbs);
|
||||
|
||||
}
|
||||
|
||||
std::cout << "----------------------------------------------------" << std::endl;
|
||||
std::cout << "AP POS FROM MAP, OPTIMIZING TXP/EXP/WAF INDIVIDUALLY FOR EACH AP" << std::endl;
|
||||
std::cout << _dstAbs.asString() << std::endl;
|
||||
std::cout << std::endl;
|
||||
|
||||
}
|
||||
|
||||
/** calculate error for fixed positions and optimized constants, each AP on its own */
|
||||
void optPosOptParamsForEach() {
|
||||
|
||||
K::Statistics<float> _dstAbs;
|
||||
|
||||
// construct vector containing each AP within the map + add fixed parameters
|
||||
for (const APAtFloor& mapAP : mapAPs) {
|
||||
|
||||
// fixed
|
||||
const MACAddress mac(mapAP.first->mac);
|
||||
const Point3 pos = mapAP.first->getPos(mapAP.second);
|
||||
|
||||
// opt-func for one AP
|
||||
auto func = [&] (const float* params) {
|
||||
K::Statistics<float> dstAbs;
|
||||
analyzeErrorForAP(mac, Point3(params[0], params[1], params[2]), params[3], params[4], params[5], dstAbs);
|
||||
return dstAbs.getAvg();
|
||||
};
|
||||
|
||||
// use simplex
|
||||
float params[6] = {40, 40, 5, -40, 2, -8};
|
||||
// K::NumOptAlgoDownhillSimplex<float> opt(6);
|
||||
// opt.setMaxIterations(50);
|
||||
// opt.setNumRestarts(10);
|
||||
// opt.calculateOptimum(func, params);
|
||||
|
||||
using LeOpt = K::NumOptAlgoRangeRandom<float>;
|
||||
const std::vector<LeOpt::MinMax> valRegion = {
|
||||
LeOpt::MinMax(-20, 120), // x
|
||||
LeOpt::MinMax(-20, 120), // y
|
||||
LeOpt::MinMax( -5, 17), // z
|
||||
LeOpt::MinMax(-50, -30), // txp
|
||||
LeOpt::MinMax( 1, 4), // exp
|
||||
LeOpt::MinMax(-15, -0), // waf
|
||||
};
|
||||
|
||||
|
||||
K::NumOptAlgoRangeRandom<float> opt(valRegion);
|
||||
opt.setPopulationSize(500);
|
||||
opt.setNumIerations(150);
|
||||
opt.calculateOptimum(func, params);
|
||||
|
||||
// local stats
|
||||
K::Statistics<float> tmp;
|
||||
analyzeErrorForAP(mac, Point3(params[0], params[1], params[2]), params[3], params[4], params[5], tmp);
|
||||
|
||||
// adjust global error with the resulting params
|
||||
std::cout << "--" << mac.asString() << " params: " << params[0] << "," << params[1] << "," << params[2] << "," << params[3] << "," << params[4] << "," << params[5] << " err: " << tmp.getAvg() << std::endl;
|
||||
analyzeErrorForAP(mac, Point3(params[0], params[1], params[2]), params[3], params[4], params[5], _dstAbs);
|
||||
|
||||
}
|
||||
|
||||
std::cout << "----------------------------------------------------" << std::endl;
|
||||
std::cout << "OPTIMIZING POS/TXP/EXP/WAF INDIVIDUALLY FOR EACH AP" << std::endl;
|
||||
std::cout << _dstAbs.asString() << std::endl;
|
||||
std::cout << std::endl;
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
#endif // EVALCOMPAREOPT_H
|
||||
Reference in New Issue
Block a user