|
|
|
|
@@ -1,21 +1,26 @@
|
|
|
|
|
\section{Experiments}
|
|
|
|
|
|
|
|
|
|
\todo{
|
|
|
|
|
alles im FHWS gebäude [korrekte groesse fuer beide gebaeude!] mit nem nexus 6
|
|
|
|
|
}
|
|
|
|
|
% intro
|
|
|
|
|
|
|
|
|
|
Within all \docWIFI{} observations (offline and online) we only consider the \docAP{}s that are permanently installed
|
|
|
|
|
within the building. Temporal and movable transmitters are ignored as they might cause estimation errors.
|
|
|
|
|
All optimizations and evaluations took place within two adjacent buildings (4 and 2 floors, respectively)
|
|
|
|
|
and two connected outdoor regions (entrance and inner courtyard),
|
|
|
|
|
yielding a total size of \SI{110}{\meter} x \SI{60}{\meter}.
|
|
|
|
|
|
|
|
|
|
Within all \docWIFI{} observations we only consider the \docAP{}s that are permanently installed,
|
|
|
|
|
and can be identified by their well-known MAC address.
|
|
|
|
|
Temporal and movable transmitters are ignored as they might cause estimation errors.
|
|
|
|
|
|
|
|
|
|
Unfortunately, due to non-disclosure agreements, we are not allowed to depict the actual location
|
|
|
|
|
of installed transmitters within the following figures.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
%modell direkt fuer den gelaufenen pfad optimiert (also wirklich jede wifi messung direkt auf den ground-truth)
|
|
|
|
|
%der fehler wird zwar kleiner, ist aber immernoch deutlich spürbar. das spricht dafür, dass das modell einfach nicht
|
|
|
|
|
%gut geeignet ist.
|
|
|
|
|
|
|
|
|
|
modell direkt fuer den gelaufenen pfad optimiert (also wirklich jede wifi messung direkt auf den ground-truth)
|
|
|
|
|
der fehler wird zwar kleiner, ist aber immernoch deutlich spürbar. das spricht dafür, dass das modell einfach nicht
|
|
|
|
|
gut geeignet ist.
|
|
|
|
|
|
|
|
|
|
optimierungs input: alle 4 walks samt ground-truth
|
|
|
|
|
dann kommt fuer die 4 typen [fixed, all same par, each par, each par pos]
|
|
|
|
|
log probability 50 75, meter 50, 75
|
|
|
|
|
%optimierungs input: alle 4 walks samt ground-truth
|
|
|
|
|
%dann kommt fuer die 4 typen [fixed, all same par, each par, each par pos]
|
|
|
|
|
%log probability 50 75, meter 50, 75
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -214,7 +219,7 @@
|
|
|
|
|
|
|
|
|
|
\subsection{Location estimation error}
|
|
|
|
|
|
|
|
|
|
\todo{übergang holprig}
|
|
|
|
|
\todo{uebergang holprig?}
|
|
|
|
|
|
|
|
|
|
%Using the optimized model setups and the measurements $\mRssiVec$ determined by scanning for nearby \docAPshort{}s,
|
|
|
|
|
%we can directly perform a location estimation by rewriting \refeq{eq:wifiProb}:
|
|
|
|
|
@@ -251,7 +256,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
We therefore conducted 10 walks on 5 different paths within our building,
|
|
|
|
|
We therefore conducted 13 walks on 5 different paths within our building,
|
|
|
|
|
each of which is defined by connecting marker points at well known positions
|
|
|
|
|
(see figure \ref{fig:allWalks}).
|
|
|
|
|
Whenever the pedestrian reached such a marker, the current time was recorded.
|
|
|
|
|
@@ -322,7 +327,7 @@
|
|
|
|
|
|
|
|
|
|
To reduce the amount such of misclassifications, where other locations within the building are
|
|
|
|
|
as likely as the pedestrians actual location, we examined various approaches.
|
|
|
|
|
Unfortunately, none of which provided a viable enhancement under all conditions for the performed walks.
|
|
|
|
|
Unfortunately, most of which did not provided a viable enhancement under all conditions for the performed walks.
|
|
|
|
|
|
|
|
|
|
The misclassification-rate is determined by counting the amount of (random) locations within
|
|
|
|
|
the building that produce a similar probability \refeq{eq:wifiProb} as the actual ground-truth
|
|
|
|
|
@@ -347,12 +352,11 @@
|
|
|
|
|
The models used within this work will not accurately predict the signal strength for such locations.
|
|
|
|
|
%%Including \docAPshort{}s unseen by the Smartphone thus often increases the estimation error instead
|
|
|
|
|
%%of fixing the multimodality.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
To sum up, while some situations, e.g. outdoors, could greatly be improved,
|
|
|
|
|
many other situations are deteriorated, especially when some transmitters are (temporarily)
|
|
|
|
|
attenuated by ambient conditions like concrete walls.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
We therefore examined variations of the probability calculation from \refeq{eq:wifiProb}.
|
|
|
|
|
Removing the strongest/weakest \docAPshort{} from $\mRssiVec{}$ yielded similar results.
|
|
|
|
|
@@ -360,105 +364,203 @@
|
|
|
|
|
as there are many situations where only a handful \docAP{}s can be seen. Removing (valid)
|
|
|
|
|
information will highly increase the error for such situations.
|
|
|
|
|
|
|
|
|
|
Using a more strict exponential distribution for the model vs. scan comparison in \refeq{eq:wifiProb}
|
|
|
|
|
had a positive effect on the misclassification error for some of the walks, but slightly increased
|
|
|
|
|
the estimation error (see figure \ref{fig:normalVsExponential}) and thus produced negative side effects.
|
|
|
|
|
Incorporating additional knowledge provided by virtual \docAP{}s (see section \ref{sec:vap}) mitigated this issues.
|
|
|
|
|
If only one out of six virtual networks is observed, this observation is likely to be erroneous, no matter
|
|
|
|
|
what the corresponding signal strength indicates. This approach improved the location estimation especially
|
|
|
|
|
for areas where a transmitter was hardly seen within the reference measurements and its optimization is thus
|
|
|
|
|
expected to be inaccurate.
|
|
|
|
|
|
|
|
|
|
\begin{figure}
|
|
|
|
|
\input{gfx/wifiCompare_normalVsExp_cross.tex}
|
|
|
|
|
\input{gfx/wifiCompare_normalVsExp_meter.tex}
|
|
|
|
|
\caption{
|
|
|
|
|
Comparison between normal- (black) and exponential-distribution (red) for \refeq{eq:wifiProb}.
|
|
|
|
|
While misclassifications are slightly reduced (upper chart),
|
|
|
|
|
the median error between ground-truth and estimation (lower chart) increases by
|
|
|
|
|
about \SI{1}{\meter}.
|
|
|
|
|
}
|
|
|
|
|
\label{fig:normalVsExponential}
|
|
|
|
|
\end{figure}
|
|
|
|
|
Using a smaller $\sigma$ or a more strict exponential distribution for the model vs. scan comparison in \refeq{eq:wifiProb}
|
|
|
|
|
had a positive effect on the misclassification error for some of the walks, but also slightly increased the overall estimation error.
|
|
|
|
|
%(see figure \ref{fig:normalVsExponential}).
|
|
|
|
|
Due to those negative side-effects, the final localization system (\refeq{eq:recursiveDensity}) is unlikely to profit from such changes.
|
|
|
|
|
|
|
|
|
|
\todo{ueberleitung OK?}
|
|
|
|
|
|
|
|
|
|
% braucht zu viel platz
|
|
|
|
|
%\begin{figure}
|
|
|
|
|
% \input{gfx/wifiCompare_normalVsExp_cross.tex}
|
|
|
|
|
% \input{gfx/wifiCompare_normalVsExp_meter.tex}
|
|
|
|
|
% \caption{
|
|
|
|
|
% Comparison between normal- (black) and exponential-distribution (red) for \refeq{eq:wifiProb}.
|
|
|
|
|
% While misclassifications are slightly reduced (upper chart),
|
|
|
|
|
% the median error between ground-truth and estimation (lower chart) increases by
|
|
|
|
|
% about \SI{1}{\meter}.
|
|
|
|
|
% }
|
|
|
|
|
% \label{fig:normalVsExponential}
|
|
|
|
|
%\end{figure}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\todo{
|
|
|
|
|
erwähnen??? sigma je nach signalstärke anpassen bringt leider auch nichts. wenn man das aber macht,
|
|
|
|
|
dann: fuer grosse signalstaerken ein grosses sigma! andersrum gehts nach hinten los!
|
|
|
|
|
}
|
|
|
|
|
%\todo{
|
|
|
|
|
% erwähnen??? sigma je nach signalstärke anpassen bringt leider auch nichts. wenn man das aber macht,
|
|
|
|
|
% dann: fuer grosse signalstaerken ein grosses sigma! andersrum gehts nach hinten los!
|
|
|
|
|
%}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% -------------------------------- final system -------------------------------- %
|
|
|
|
|
|
|
|
|
|
\subsection{Overall system error}
|
|
|
|
|
|
|
|
|
|
After examining the \docWIFI{} component on its own, we will now analyze the impact of aforementioned model
|
|
|
|
|
optimizations on our smartphone-based indoor localization system described in section \ref{sec:system}.
|
|
|
|
|
|
|
|
|
|
Due to other sensors and the transition constraints from the buildings floorplan, we expect the
|
|
|
|
|
posterior density to often get stuck when the \docWIFI{} component provides erroneous estimations
|
|
|
|
|
due to bad signal strength predictions:
|
|
|
|
|
%
|
|
|
|
|
A pedestrian walks along a hallway, but bad model values indicate that his most likely position
|
|
|
|
|
is within a room right next to the hallway.
|
|
|
|
|
If the density (described by the particles) is dragged (completely) into this room,
|
|
|
|
|
the IMU indicates no change in direction (pedestrian walks straight),
|
|
|
|
|
and the room has only one single door, the density is trapped within this room.
|
|
|
|
|
%
|
|
|
|
|
Such problems can often be solved by simply using more particles to describe the posterior.
|
|
|
|
|
|
|
|
|
|
As particle filtering from \refeq{eq:recursiveDensity} is a random process with varying output,
|
|
|
|
|
we calculated each combination of the {\em 13 walks and optimization strategy},
|
|
|
|
|
25 times, using 5000, 7500 and 10000 particles resulting in 75 runs per walk, 975 per strategy and 5850 in total.
|
|
|
|
|
%
|
|
|
|
|
Figure \ref{fig:overallSystemError} depicts the error distribution per optimization strategy,
|
|
|
|
|
resulting from all executions for each walk conducted with the smartphone.
|
|
|
|
|
|
|
|
|
|
While most values represent the expected results (more optimization yields better results),
|
|
|
|
|
the values for {\em \noOptEmpiric{}} and {\em \optPerRegion{}} do not.
|
|
|
|
|
The slightly increased error for both strategies can be explained by having a closer look at the walked
|
|
|
|
|
paths and relates to exceptional regions like outdoors. In both cases there is some sort of model overadaption.
|
|
|
|
|
%
|
|
|
|
|
As mentioned earlier, {\em \noOptEmpiric{}} is unable to accurately model the signal strength for the whole
|
|
|
|
|
building, resulting in increased estimation errors for outdoor regions, where the filter fails to conclude
|
|
|
|
|
the walk.
|
|
|
|
|
%
|
|
|
|
|
While {\em \optPerRegion{}} does not suffer from such issues due to separated optimization regions for in- and outdoor,
|
|
|
|
|
its increased error relates to movements between such adjacent regions, as there often is a huge model difference.
|
|
|
|
|
While this difference is perfectly fine, as it also exists within real world conditions,
|
|
|
|
|
the filtering process suffers especially at such model-boundaries:
|
|
|
|
|
The model prevents the particles from moving e.g. from inside the building towards outdoor regions, as the
|
|
|
|
|
outdoor-model does not match at all. Due to sensor delays and issues with the absolute heading near in- and outdoor boundaries
|
|
|
|
|
(metal-framed doors) the error is slightly increased and retained for some time until the density stabilizes itself.
|
|
|
|
|
|
|
|
|
|
Such situations should be mitigated by the smartphone's GPS sensor. However, within our testing walks, the GPS
|
|
|
|
|
did rarely provide accurate measurements, as the outdoor-time was to short for the sensor to receive a valid
|
|
|
|
|
fix. The accuracy indicated by the GPS usually was \SI{50}{\meter} and above.
|
|
|
|
|
|
|
|
|
|
Especially for {\em path 1}, the particle-filter often got stuck within the upper right outdoor area between both buildings
|
|
|
|
|
(see figure \ref{fig:allWalks}). Using the empirical parameters, \SI{40}{\percent} of all runs for this path got stuck at this location.
|
|
|
|
|
While {\em \optParamsAllAP{}} already reduced the risk to \SI{20}{\percent}, all other optimization strategies did not get stuck at all.
|
|
|
|
|
|
|
|
|
|
The same effect holds for all other conducted walks: The better the model optimization, the lower the risk of getting stuck somewhere along the path.
|
|
|
|
|
|
|
|
|
|
Varying the number of particles between 5000 and 10000 indicated only a minor increase in accuracy and slightly decreased the risk of getting stuck.
|
|
|
|
|
|
|
|
|
|
Comparing the results of figure \ref{fig:modelPerformance} and \ref{fig:overallSystemError} one can
|
|
|
|
|
denote the positive impact of fusioning multiple sensors with a transition model based on the buildings
|
|
|
|
|
actual floorplan. Especially the outdoor regions, or other areas with disabled \docWIFI{} component highly
|
|
|
|
|
profit from the data provided by the smartphones IMU, which prevents the estimation from getting lost.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin{figure}
|
|
|
|
|
\input{gfx/overall-system-error.tex}
|
|
|
|
|
\caption{
|
|
|
|
|
Cumulative error distribution for each model when used within the final localization system from \refeq{eq:recursiveDensity}.
|
|
|
|
|
Despite some discussed exceptions, highly optimized models lead to lower localization errors.
|
|
|
|
|
}
|
|
|
|
|
\label{fig:overallSystemError}
|
|
|
|
|
\end{figure}
|
|
|
|
|
|
|
|
|
|
% results
|
|
|
|
|
% 5000 particles
|
|
|
|
|
%
|
|
|
|
|
% model empiric
|
|
|
|
|
% |path1a(5.76715@100%) |path1b(3.73881@4%) |toni-all-1a(6.1505@76%) |toni-all-1b(4.60639@40%) |path2a(7.35355@28%) |path2b(7.4316@0%) |toni-all-2a(10.7068@44%) |toni-all-2b(7.4323@28%) |toni-inst-1b(4.60685@0%) |toni-inst-2a(3.83979@0%) |toni-inst-2b(3.98889@0%) |toni-inst-3a(4.70925@0%) |toni-inst-3b(4.40971@0%) | OVERALL:(5.12463@24%)
|
|
|
|
|
% model opt 1
|
|
|
|
|
% |path1a(17.6635@56%) |path1b(9.41882@24%)|toni-all-1a(4.06972@0%) |toni-all-1b(3.83157@0%) |path2a(6.92405@16%) |path2b(8.6365@16%) |toni-all-2a(11.6348@48%) |toni-all-2b(12.029@76%) |toni-inst-1b(5.07535@0%) |toni-inst-2a(4.45517@0%) |toni-inst-2b(3.99025@0%) |toni-inst-3a(8.28201@8%) |toni-inst-3b(5.57021@20%) | OVERALL:(6.57212@20%)
|
|
|
|
|
% model opt 2
|
|
|
|
|
% |path1a(2.01602@0%) |path1b(2.90237@0%) |toni-all-1a(2.80293@0%) |toni-all-1b(1.99745@0%) |path2a(5.39013@4%) |path2b(8.13855@0%) |toni-all-2a(9.7462@40%) |toni-all-2b(9.28677@44%) |toni-inst-1b(4.5305@0%) |toni-inst-2a(4.28726@0%) |toni-inst-2b(4.03041@0%) |toni-inst-3a(4.26278@4%) |toni-inst-3b(5.63394@24%) | OVERALL:(4.07822@8%)
|
|
|
|
|
% model opt 3
|
|
|
|
|
% |path1a(1.74623@0%) |path1b(2.61609@0%) |toni-all-1a(2.49372@0%) |toni-all-1b(1.90326@0%) |path2a(5.07957@4%) |path2b(7.73973@8%) |toni-all-2a(10.2793@48%) |toni-all-2b(6.48194@16%) |toni-inst-1b(5.73752@4%) |toni-inst-2a(3.76165@0%) |toni-inst-2b(3.51509@0%) |toni-inst-3a(6.06681@16%) |toni-inst-3b(5.27748@24%) | OVERALL:(3.94786@9%)
|
|
|
|
|
% model per floor
|
|
|
|
|
% |path1a(1.76139@0%) |path1b(2.22047@0%) |toni-all-1a(2.10094@0%) |toni-all-1b(1.62287@0%) |path2a(5.50715@16%) |path2b(7.1257@0%) |toni-all-2a(10.5138@48%) |toni-all-2b(6.72044@20%) |toni-inst-1b(3.77885@0%) |toni-inst-2a(2.23669@0%) |toni-inst-2b(3.20604@0%) |toni-inst-3a(2.46891@0%) |toni-inst-3b(2.73366@0%) | OVERALL:(3.22315@6%)
|
|
|
|
|
% model per bbox
|
|
|
|
|
% |path1a(1.80033@0%) |path1b(2.32875@0%) |toni-all-1a(2.17754@0%) |toni-all-1b(1.6697@0%) |path2a(6.38772@16%) |path2b(5.84004@0%) |toni-all-2a(9.67635@36%) |toni-all-2b(8.3282@24%) |toni-inst-1b(4.11891@0%) |toni-inst-2a(2.64016@0%) |toni-inst-2b(3.36297@0%) |toni-inst-3a(2.15568@0%) |toni-inst-3b(2.98047@0%) | OVERALL:(3.40679@5%)
|
|
|
|
|
%
|
|
|
|
|
%
|
|
|
|
|
% 7500 particles
|
|
|
|
|
% model empiric
|
|
|
|
|
% |path1a(8.23256@100%) |path1b(3.91532@0%) |toni-all-1a(7.0666@80%) |toni-all-1b(5.35225@48%) |path2a(6.5708@16%) |path2b(7.53023@0%) |toni-all-2a(10.6246@40%) |toni-all-2b(6.63087@4%) |toni-inst-1b(4.76934@0%) |toni-inst-2a(3.82903@0%) |toni-inst-2b(4.00339@0%) |toni-inst-3a(3.85417@4%) |toni-inst-3b(4.47613@0%) | OVERALL:(5.23337@22%)
|
|
|
|
|
% model opt 1
|
|
|
|
|
% |path1a(10.3959@36%) |path1b(8.37674@16%)|toni-all-1a(3.96164@0%) |toni-all-1b(4.24675@4%) |path2a(6.02912@8%) |path2b(8.1804@0%) |toni-all-2a(12.4277@48%) |toni-all-2b(10.4748@56%) |toni-inst-1b(5.49874@4%) |toni-inst-2a(4.09279@0%) |toni-inst-2b(3.87762@0%) |toni-inst-3a(5.10456@0%) |toni-inst-3b(4.52029@4%) | OVERALL:(5.97832@13%)
|
|
|
|
|
% model opt 2
|
|
|
|
|
% |path1a(2.04657@0%) |path1b(2.82853@0%) |toni-all-1a(2.93467@0%) |toni-all-1b(1.98463@0%) |path2a(4.66513@8%) |path2b(8.19959@0%) |toni-all-2a(8.34246@12%) |toni-all-2b(7.2456@12%) |toni-inst-1b(4.72651@0%) |toni-inst-2a(4.00208@0%) |toni-inst-2b(3.94811@0%) |toni-inst-3a(3.74498@0%) |toni-inst-3b(5.15519@16%) | OVERALL:(3.99594@3%)
|
|
|
|
|
% model opt 3
|
|
|
|
|
% |path1a(1.82148@0%) |path1b(2.7664@0%) |toni-all-1a(2.46073@0%) |toni-all-1b(1.93273@0%) |path2a(5.15394@4%) |path2b(7.53562@0%) |toni-all-2a(8.43582@20%) |toni-all-2b(6.01557@8%) |toni-inst-1b(5.47576@0%) |toni-inst-2a(3.44451@0%) |toni-inst-2b(3.6069@0%) |toni-inst-3a(4.84921@4%) |toni-inst-3b(5.62456@8%) | OVERALL:(3.88747@3%)
|
|
|
|
|
% model per floor
|
|
|
|
|
% |path1a(1.79881@0%) |path1b(2.1456@0%) |toni-all-1a(2.17125@0%) |toni-all-1b(1.63247@0%) |path2a(5.37789@8%) |path2b(6.79701@0%) |toni-all-2a(9.29407@32%) |toni-all-2b(6.28292@8%) |toni-inst-1b(3.79967@0%) |toni-inst-2a(2.24007@0%) |toni-inst-2b(3.15768@0%) |toni-inst-3a(2.17671@0%) |toni-inst-3b(2.83445@0%) | OVERALL:(3.16559@3%)
|
|
|
|
|
% model per bbox
|
|
|
|
|
% |path1a(1.77473@0%) |path1b(2.2609@0%) |toni-all-1a(2.06814@4%) |toni-all-1b(1.6841@0%) |path2a(6.48652@4%) |path2b(5.79359@0%) |toni-all-2a(9.40116@24%) |toni-all-2b(7.21382@16%) |toni-inst-1b(3.82829@0%) |toni-inst-2a(2.47975@0%) |toni-inst-2b(3.35265@0%) |toni-inst-3a(2.20058@0%) |toni-inst-3b(2.86407@0%) | OVERALL:(3.3381@3%)
|
|
|
|
|
%
|
|
|
|
|
% 10000 particles
|
|
|
|
|
% model empiric
|
|
|
|
|
% |path1a(6.43082@100%) |path1b(3.58544@0%) |toni-all-1a(6.92747@76%) |toni-all-1b(5.81139@72%) |path2a(5.12683@4%) |path2b(7.91078@0%) |toni-all-2a(10.3958@16%) |toni-all-2b(7.09186@8%) |toni-inst-1b(4.45815@0%) |toni-inst-2a(4.077@0%) |toni-inst-2b(4.02524@0%) |toni-inst-3a(3.35953@0%) |toni-inst-3b(4.40318@0%) | OVERALL:(5.06224@21%)
|
|
|
|
|
% model opt 1
|
|
|
|
|
% |path1a(6.47262@16%) |path1b(6.04852@12%)|toni-all-1a(3.97276@0%) |toni-all-1b(3.62778@0%) |path2a(5.48776@8%) |path2b(8.21965@0%) |toni-all-2a(11.3175@44%) |toni-all-2b(11.4499@60%) |toni-inst-1b(5.19827@0%) |toni-inst-2a(4.1351@0%) |toni-inst-2b(3.90291@0%) |toni-inst-3a(4.58096@8%) |toni-inst-3b(4.62723@4%) | OVERALL:(5.47998@11%)
|
|
|
|
|
% model opt 2
|
|
|
|
|
% |path1a(2.15007@0%) |path1b(2.80157@0%) |toni-all-1a(2.70849@0%) |toni-all-1b(1.8937@0%) |path2a(4.13743@0%) |path2b(8.20317@0%) |toni-all-2a(7.86448@12%) |toni-all-2b(7.41533@12%) |toni-inst-1b(4.54459@0%) |toni-inst-2a(4.17614@0%) |toni-inst-2b(3.90311@0%) |toni-inst-3a(3.846@4%) |toni-inst-3b(4.84665@8%) | OVERALL:(3.89883@2%)
|
|
|
|
|
% model opt 3
|
|
|
|
|
% |path1a(1.79085@0%) |path1b(2.64892@0%) |toni-all-1a(2.33085@0%) |toni-all-1b(1.9533@0%) |path2a(4.40712@4%) |path2b(7.815@0%) |toni-all-2a(8.97738@28%) |toni-all-2b(5.87188@0%) |toni-inst-1b(4.93315@0%) |toni-inst-2a(3.53349@0%) |toni-inst-2b(3.60056@0%) |toni-inst-3a(5.57379@8%) |toni-inst-3b(4.49996@4%) | OVERALL:(3.78756@3%)
|
|
|
|
|
% model per floor
|
|
|
|
|
% |path1a(1.7498@0%) |path1b(2.11555@0%) |toni-all-1a(1.89388@0%) |toni-all-1b(1.61323@0%) |path2a(5.06884@0%) |path2b(6.7157@0%) |toni-all-2a(9.54228@36%) |toni-all-2b(6.7699@24%) |toni-inst-1b(3.84709@0%) |toni-inst-2a(2.2789@0%) |toni-inst-2b(3.17625@0%) |toni-inst-3a(2.13417@0%) |toni-inst-3b(2.59095@0%) | OVERALL:(3.08506@4%)
|
|
|
|
|
% model per bbox
|
|
|
|
|
% |path1a(1.73406@0%) |path1b(2.30577@0%) |toni-all-1a(2.01979@0%) |toni-all-1b(1.64225@0%) |path2a(6.30713@12%) |path2b(6.02961@0%) |toni-all-2a(9.70206@20%) |toni-all-2b(6.55847@8%) |toni-inst-1b(3.93324@0%) |toni-inst-2a(2.459@0%) |toni-inst-2b(3.3522@0%) |toni-inst-3a(2.13783@0%) |toni-inst-3b(2.63231@0%) | OVERALL:(3.29408@3%)
|
|
|
|
|
|
|
|
|
|
% all combined
|
|
|
|
|
% model empiric
|
|
|
|
|
% |path1a(6.72661@100%) |path1b(3.74113@1%) |toni-all-1a(6.69696@77%) |toni-all-1b(5.26661@53%) |path2a(6.11286@16%) |path2b(7.63154@0%) |toni-all-2a(10.5765@33%) |toni-all-2b(7.0506@13%) |toni-inst-1b(4.61087@0%) |toni-inst-2a(3.91375@0%) |toni-inst-2b(4.00372@0%) |toni-inst-3a(3.89586@1%) |toni-inst-3b(4.43552@0%) | OVERALL:(5.13701@22%)
|
|
|
|
|
% model opt 1
|
|
|
|
|
% |path1a(10.0538@36%) |path1b(7.96075@17%)|toni-all-1a(3.99762@0%) |toni-all-1b(3.89137@1%) |path2a(6.08714@10%) |path2b(8.33165@5%) |toni-all-2a(11.7481@46%) |toni-all-2b(11.2068@64%) |toni-inst-1b(5.25558@1%) |toni-inst-2a(4.23255@0%) |toni-inst-2b(3.92269@0%) |toni-inst-3a(5.62327@5%) |toni-inst-3b(4.82302@9%) | OVERALL:(6.00231@15%)
|
|
|
|
|
% model opt 2
|
|
|
|
|
% |path1a(2.07273@0%) |path1b(2.84622@0%) |toni-all-1a(2.81671@0%) |toni-all-1b(1.9553@0%) |path2a(4.66453@4%) |path2b(8.17561@0%) |toni-all-2a(8.60702@21%) |toni-all-2b(7.68813@22%) |toni-inst-1b(4.59132@0%) |toni-inst-2a(4.15243@0%) |toni-inst-2b(3.96315@0%) |toni-inst-3a(3.96402@2%) |toni-inst-3b(5.16219@16%) | OVERALL:(3.99259@5%)
|
|
|
|
|
% model opt 3
|
|
|
|
|
% |path1a(1.78819@0%) |path1b(2.67775@0%) |toni-all-1a(2.43527@0%) |toni-all-1b(1.92948@0%) |path2a(4.90009@4%) |path2b(7.70505@2%) |toni-all-2a(9.16313@32%) |toni-all-2b(6.10436@8%) |toni-inst-1b(5.37191@1%) |toni-inst-2a(3.57332@0%) |toni-inst-2b(3.57426@0%) |toni-inst-3a(5.4337@9%) |toni-inst-3b(5.12685@12%) | OVERALL:(3.86918@5%)
|
|
|
|
|
% model per floor
|
|
|
|
|
% |path1a(1.77029@0%) |path1b(2.16265@0%) |toni-all-1a(2.05043@0%) |toni-all-1b(1.62289@0%) |path2a(5.29536@8%) |path2b(6.88344@0%) |toni-all-2a(9.75416@38%) |toni-all-2b(6.57473@17%) |toni-inst-1b(3.80742@0%) |toni-inst-2a(2.25183@0%) |toni-inst-2b(3.18067@0%) |toni-inst-3a(2.24992@0%) |toni-inst-3b(2.72835@0%) | OVERALL:(3.15739@4%)
|
|
|
|
|
% model per bbox
|
|
|
|
|
% |path1a(1.76908@0%) |path1b(2.30081@0%) |toni-all-1a(2.09503@1%) |toni-all-1b(1.66411@0%) |path2a(6.39346@10%) |path2b(5.8772@0%) |toni-all-2a(9.59953@26%) |toni-all-2b(7.06924@16%) |toni-inst-1b(3.96094@0%) |toni-inst-2a(2.51694@0%) |toni-inst-2b(3.3549@0%) |toni-inst-3a(2.1656@0%) |toni-inst-3b(2.81547@0%) | OVERALL:(3.34847@4%)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% REAL WALKS
|
|
|
|
|
\todo{obwohl das angepasste modell doch recht gut laeuft und der fehler recht klein wird, sind immernoch stellen dabei,
|
|
|
|
|
wo es einfach nicht gut passt, unguenstige mehrdeutigkeiten vorliegen, oder regionen einfach nicht passen wie sie sollten.
|
|
|
|
|
das liegt teils auch daran, dass die fingerprints drehend aufgenommen wurden und beim laufen nach hinten durch den
|
|
|
|
|
menschen abgeschottet wird. auch zeitlicher verzug kann ein problem darstellen.}
|
|
|
|
|
|
|
|
|
|
%\todo{obwohl das angepasste modell doch recht gut laeuft und der fehler recht klein wird, sind immernoch stellen dabei,
|
|
|
|
|
%wo es einfach nicht gut passt, unguenstige mehrdeutigkeiten vorliegen, oder regionen einfach nicht passen wie sie sollten.
|
|
|
|
|
%das liegt teils auch daran, dass die fingerprints drehend aufgenommen wurden und beim laufen nach hinten durch den
|
|
|
|
|
%menschen abgeschottet wird. auch zeitlicher verzug kann ein problem darstellen.}
|
|
|
|
|
|
|
|
|
|
\todo{GPS ist leider kaum eine hilfe. entweder kein empfang wegen ueberdachung oder abschattung, oder
|
|
|
|
|
zu kurz draußen um einen guten gps-fix zu bekommen.}
|
|
|
|
|
%\todo{
|
|
|
|
|
% wenn ich beim fingerprinten einen AP an einer stelle NICHT gesehen habe,
|
|
|
|
|
% ist das auch eine aussage für die model optimierung.. da kann dann sicher keine signatlstaerke > -90 an der stelle raus kommen
|
|
|
|
|
%}
|
|
|
|
|
|
|
|
|
|
\todo{
|
|
|
|
|
walk1 hat eine issue kurz bevor man zur tuer zum hoersaalgebaude reingeht
|
|
|
|
|
je nach resampling killt dieser wlan error evtl alle partikel!
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
\todo{
|
|
|
|
|
das bbox modell hat probleme an den uebergängen zwischen bboxes da dort teils starke spruenge sind
|
|
|
|
|
die nicht immer in der realität so auch vorliegen. z.B. z-wechsel machen teils probleme.
|
|
|
|
|
hier wäre ein kontinuierliches modell hilfreich bzw interpolation in randbereichen
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
\todo{
|
|
|
|
|
wenn ich beim fingerprinten einen AP an einer stelle NICHT gesehen habe,
|
|
|
|
|
ist das auch eine aussage für die model optimierung.. da kann dann sicher keine signatlstaerke > -90 an der stelle raus kommen
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
\todo{gps wird so schnell nicht warm, versagt denn auf dem hof als hilfestellung}
|
|
|
|
|
%ware das grid-model nicht da, wuerde der outdoor teil richtig schlecht laufen,
|
|
|
|
|
%weil das wlan hier absolut ungenau ist.. da die partikel aber aufgrund des vorherigen
|
|
|
|
|
%walks schon recht dicht beisamen sind, kittet das das ganze sehr gut.
|
|
|
|
|
%kann man testen, indem man z.B. weniger resampling macht und mehr alte partikel aufhebt.
|
|
|
|
|
%geht sofort kaputt sobald man aus dem gebäude raus kommt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% was ist das??
|
|
|
|
|
%\input{gfx/wifi-opt-error-hist-methods.tex}
|
|
|
|
|
%\input{gfx/wifi-opt-error-hist-stair-outdoor.tex}
|
|
|
|
|
%outdoor hat insgesamt nicht all zu viel einfluss, da die meisten APs
|
|
|
|
|
%an den outdoor punkten kaum gesehen werden. auf einzelne APs kann
|
|
|
|
|
%der einfluss jedoch recht groß sein, siehe den fingerprint plot von
|
|
|
|
|
%dem einen ausgewählten AP
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ware das grid-model nicht da, wuerde der outdoor teil richtig schlecht laufen,
|
|
|
|
|
weil das wlan hier absolut ungenau ist.. da die partikel aber aufgrund des vorherigen
|
|
|
|
|
walks schon recht dicht beisamen sind, kittet das das ganze sehr gut.
|
|
|
|
|
kann man testen, indem man z.B. weniger resampling macht und mehr alte partikel aufhebt.
|
|
|
|
|
geht sofort kaputt sobald man aus dem gebäude raus kommt
|
|
|
|
|
%\todo{anfaenglich falsches heading ist gift, wegen rel. heading, weil sich dann alles verlaeuft. fix: anfaenglich große heading variation erlauben}
|
|
|
|
|
|
|
|
|
|
signalstaerke limitieren, wie : alles was im model oder scan < -90 ist, wird auf -90 abgeschnitten hilft
|
|
|
|
|
zwar an manchen stellen, im groben und ganzen führt es aber eher zu fehlern als zu verbesserungen.
|
|
|
|
|
zudem ist zu erwarten, dass diese zahl stark vom geraet/hardware abhaengt
|
|
|
|
|
%\todo{NICHT MEHR AKTUELL: abs-head ist in der observation besser, weil es beim resampling mehr bringt und dafuer srogt, dass die richtigen geloescht werden!}
|
|
|
|
|
|
|
|
|
|
jeweils beim weighting die niedrigste wifi probability weglassen [je nach particle also ein anderer AP]
|
|
|
|
|
bringt auch nicht immer was.. killt gelegentlich floor-changes. zudem stehen am ende nur sehr wenige
|
|
|
|
|
APs zur verfügung. da einen zu ignorieren, macht noch mehr kaputt
|
|
|
|
|
|
|
|
|
|
auch ein versuch wie werfe alle APs aus dem handy-scan weg, die kleiner -90 sind, birgt die selben risiken
|
|
|
|
|
es scheint wirklich am sinnvollsten, die scan-daten einfach 1:1 zu nehmen wie sie sind
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kurz vor ende von path 2 will die estimation nicht in die cafeteria, weil ein paar particle
|
|
|
|
|
die treppe richtung h.1.5 hochgehen und durch das wlan sehr sehr hoch gewichtet werden.
|
|
|
|
|
die mittelwert-estimation versagt hier
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% was ist das??
|
|
|
|
|
%\input{gfx/wifi-opt-error-hist-methods.tex}
|
|
|
|
|
%\input{gfx/wifi-opt-error-hist-stair-outdoor.tex}
|
|
|
|
|
%outdoor hat insgesamt nicht all zu viel einfluss, da die meisten APs
|
|
|
|
|
%an den outdoor punkten kaum gesehen werden. auf einzelne APs kann
|
|
|
|
|
%der einfluss jedoch recht groß sein, siehe den fingerprint plot von
|
|
|
|
|
%dem einen ausgewählten AP
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\todo{anfaenglich falsches heading ist gift, wegen rel. heading, weil sich dann alles verlaeuft. fix: anfaenglich große heading variation erlauben}
|
|
|
|
|
|
|
|
|
|
\todo{NICHT MEHR AKTUELL: abs-head ist in der observation besser, weil es beim resampling mehr bringt und dafuer srogt, dass die richtigen geloescht werden!}
|
|
|
|
|
|
|
|
|
|
\todo{ deutlich machen
|
|
|
|
|
wenn man nur die fingerprints des floors nimmt in dem gelaufen wird, ist alles gut
|
|
|
|
|
sobald man andere floors drueber/drunter dazu nimmt, ist es nicht mehr gnaz so gut, oder wird schlechter
|
|
|
|
|
das spricht dafuer dass das modell nicht gut passt
|
|
|
|
|
koennte man zeigen indem man den durchschnittlichen fehler je fingerprint plottet???
|
|
|
|
|
}
|
|
|
|
|
|