current state
This commit is contained in:
@@ -1,12 +1,5 @@
|
||||
experiments
|
||||
|
||||
\todo{obwohl das angepasste modell doch recht gut laeuft und der fehler recht klein wird, sind immernoch stellen dabei,
|
||||
wo es einfach nicht gut passt, unguenstige mehrdeutigkeiten vorliegen, oder regionen einfach nicht passen wie sie sollten.
|
||||
das liegt teils auch daran, dass die fingerprints drehend aufgenommen wurden und beim laufen nach hinten durch den
|
||||
menschen abgeschottet wird. auch zeitlicher verzug kann ein problem darstellen.}
|
||||
|
||||
\todo{GPS ist leider kaum eine hilfe. entweder kein empfang wegen ueberdachung oder abschattung, oder
|
||||
zu kurz draußen um einen guten gps-fix zu bekommen.}
|
||||
\section{Experiments}
|
||||
|
||||
wir betrachten nur die fest-installierten APs die man meist anhand einer bestimmten mac-range ausmachen kann
|
||||
portable geraete von studenten, beamer, aehnliches werden ignoriert
|
||||
@@ -37,90 +30,248 @@ optimierungs input: alle 4 walks samt ground-truth
|
||||
dann kommt fuer die 4 typen [fixed, all same par, each par, each par pos]
|
||||
log probability 50 75, meter 50, 75
|
||||
|
||||
path1
|
||||
31.8|38.9 7.8|11.6
|
||||
27.3|36.8 7.2|9.8
|
||||
24.0|30.3 5.8|10.24
|
||||
22.9|29.9 5.0|7.6
|
||||
|
||||
hoherer fehler weil mehr outdoor anteil
|
||||
path2
|
||||
32.0|42.4 12.6|20.9
|
||||
28.4|35.2 10.1|16.1
|
||||
27.0|34.0 7.0|10.1
|
||||
25.4|33.3 8.0|17.2
|
||||
|
||||
|
||||
je mehr outdoor, desto schlechter wird es.
|
||||
outdoor schadet auch der optimierung
|
||||
outdoor schadet mehr als indoor, weil das wifi modell fuer indoor noch halbwegs passt
|
||||
aber fuer outdoor so garned
|
||||
|
||||
|
||||
fenster sind metallbedampft und schirmen stark ab
|
||||
siehe beispielgrafik
|
||||
|
||||
gps wird so schnell nicht warm, versagt denn auf dem hof als hilfestellung
|
||||
|
||||
|
||||
|
||||
reines wifi eval mittels num-opt springt stark durch die gegend
|
||||
d.h. das bewegungsmodell rettet uns
|
||||
kann man auch testen wenn man beim particle-filter das resampling ganz aus macht
|
||||
|
||||
\todo{
|
||||
we analyzed various paths throughout the whole building
|
||||
}
|
||||
|
||||
\todo{
|
||||
mit grafik: exp-dist vergroesert teils den abstand zu anderen locations , der GT selbst wird also besser,
|
||||
aber an anderen stellen geht dafür der fehler hoch und kann zu verlaufen führen (z.B. treppenhaus)
|
||||
}
|
||||
|
||||
|
||||
|
||||
% -------------------------------- optimization -------------------------------- %
|
||||
|
||||
% used reference measurements
|
||||
\begin{figure}
|
||||
{
|
||||
\centering
|
||||
\input{gfx/all_fingerprints.tex}
|
||||
}
|
||||
\label{fig:referenceMeasurements}
|
||||
\caption{
|
||||
Locations of the 121 reference measurements.
|
||||
The size of each square denotes the number of permanently installed \docAPshort{}s
|
||||
that are visible at this location,
|
||||
and ranges between 2 and 22 with an average of 9.
|
||||
}
|
||||
\end{figure}
|
||||
|
||||
% visible APs:
|
||||
% cnt(121) min(2.000000) max(22.000000) range(20.000000) med(8.000000) avg(9.322314) stdDev(4.386709)
|
||||
|
||||
\begin{figure}
|
||||
\input{gfx/wifi_model_error_0_95.tex}
|
||||
\input{gfx/wifi_model_error_95_100.tex}
|
||||
\label{fig:wifiModelError}%
|
||||
\caption{%
|
||||
Comparison between different optimization strategies by examining the error (in \decibel) at each reference measurement.%
|
||||
The higher the number of variable parameters, the better the model resembles real world conditions. %
|
||||
}%
|
||||
\end{figure}
|
||||
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\input{gfx/compare-wifi-in-out.tex}
|
||||
\caption{
|
||||
Measurable signal strengths of a testing \docAPshort{} (black dot).
|
||||
While the signal diminishes slowly along the corridor (upper rectangle)
|
||||
the metallised windows (dashed outline) attenuate the signal by over \SI{30}{\decibel} (lower rectangle).
|
||||
}
|
||||
\end{figure}
|
||||
|
||||
fenster sind metallbedampft und schirmen stark ab
|
||||
siehe beispielgrafik
|
||||
|
||||
\todo{
|
||||
distance between AP pos estimation and real position???
|
||||
}
|
||||
|
||||
|
||||
% -------------------------------- number of fingerprints -------------------------------- %
|
||||
|
||||
wie viele fingerprints sind genug?
|
||||
|
||||
Haengt vom modell ab
|
||||
|
||||
bei den einfachen modellen aendert sich erstmal nicht viel. man hat ja viele testdaten für ein modell mit wenigen parametern.
|
||||
je mehr variable wird, z.B. position, und das ganze pro AP und nicht füer alle, desto wichtiger wird, dass die fingerprints passen.
|
||||
|
||||
neuralgische schwachpunkte wie betonierte treppenhäuser kann man weglassen, dadurch wird der rest etwas besser,
|
||||
die treppenhäuser ansich aber natürlich nochmal schlechter. siehe \ref{fig:wifiNumFingerprints}
|
||||
|
||||
\begin{figure}
|
||||
\input{gfx/wifi_model_error_num_fingerprints_method_5_0_90.tex}
|
||||
\input{gfx/wifi_model_error_num_fingerprints_method_5_90_100.tex}
|
||||
\label{fig:wifiNumFingerprints}%
|
||||
\caption{%
|
||||
number of fingerprints
|
||||
}%
|
||||
\end{figure}
|
||||
|
||||
|
||||
|
||||
|
||||
% -------------------------------- wifi walk error -------------------------------- %
|
||||
|
||||
Using aforementioned model setups and the measurements $\mRssiVec$ determined by scanning for nearby \docAPshort{}s,
|
||||
we can directly perform a location estimation by rewriting \refeq{eq:wifiProb}:
|
||||
|
||||
\begin{equation}
|
||||
p(\mPosVec \mid \mRssiVec) =
|
||||
\frac{p(\mRssiVec \mid \mPosVec) p(\mPosVec)}{p(\mRssiVec)}
|
||||
\approx p(\mRssiVec \mid \mPosVec),\enskip
|
||||
p(\mPosVec) = p(\mRssiVec) = \text{const}
|
||||
.
|
||||
\label{eq:wifiBayes}
|
||||
\end{equation}
|
||||
|
||||
The pedestrian's current location $\mPosVec^*$ given $\mRssiVec$ satisfies
|
||||
|
||||
\begin{equation}
|
||||
\mPosVec^* = \argmax_{\mPosVec}
|
||||
p(\mRssiVec \mid \mPosVec)
|
||||
.
|
||||
\label{eq:bestWiFiPos}
|
||||
\end{equation}
|
||||
|
||||
The quality of the estimated location is determined by comparing the estimation
|
||||
$\mPosVec^*$ with the pedestrian's ground truth at the time the scan $\mRssiVec$
|
||||
has been received.
|
||||
|
||||
We therefore conducted 10 walks on 5 different paths within our building,
|
||||
each of which is defined by connecting several marker points at well known positions
|
||||
(see figure \ref{fig:allWalks}).
|
||||
Whenever the pedestrian reached such a marker, the current time was recorded.
|
||||
Due to constant walking speeds, the ground-truth for any timestamp can be approximated
|
||||
using linear interpolation between adjacent markers.
|
||||
|
||||
% walked paths
|
||||
\begin{figure}
|
||||
{
|
||||
\centering
|
||||
\input{gfx/all_walks.tex}
|
||||
}
|
||||
\label{fig:allWalks}
|
||||
\caption{
|
||||
Overview of all conducted paths.
|
||||
Outdoor areas are marked in green.
|
||||
}
|
||||
\end{figure}
|
||||
|
||||
To estimate the performance of the prediction models, we compare the position estimation
|
||||
for each \docWIFI{} measurement within the recorded paths (3756 \docAPshort{} scans in total)
|
||||
against the corresponding ground-truth, which indicates the absolute 3D error in meter.
|
||||
|
||||
\begin{figure}
|
||||
\input{gfx/modelPerformance_meter.tex}
|
||||
\label{fig:modelPerformance}
|
||||
\caption{
|
||||
Error between ground truth and estimation using \refeq{eq:bestWiFiPos} depending
|
||||
on the underlying signal strength prediction model
|
||||
}
|
||||
\end{figure}
|
||||
|
||||
As can be seen in figure \ref{fig:modelPerformance}, the quality of the location estimation
|
||||
directly scales with the quality of the signal strength prediction model.
|
||||
However, depending on the model, the maximal estimation error might increase (see \optParamsPosEachAP{}).
|
||||
%
|
||||
This is either due to multimodalities, where more than one area is possible based on the recent
|
||||
\docWIFI{} observation, or optimization yields an overadaption where the average signal
|
||||
strength prediction error is small, but the maximum error is dramatically increased for some regions.
|
||||
|
||||
|
||||
|
||||
% -------------------------------- plots indicating optimization issues -------------------------------- %
|
||||
|
||||
\begin{figure}
|
||||
\input{gfx/wifiMultimodality.tex}
|
||||
\label{fig:wifiMultimodality}
|
||||
\caption{
|
||||
Location probability \refeq{eq:bestWiFiPos} for three scans. Higher color intensities are more likely.
|
||||
Ideally, places near the ground truth (black) are highly highly probable (green).
|
||||
Often, other locations are just as likely as the ground truth (blue),
|
||||
or the location with the highest probability does not match at all (red).
|
||||
}
|
||||
\end{figure}
|
||||
|
||||
Figure \ref{fig:wifiMultimodality} depicts aforementioned issues of multimodal (blue) or wrong (red) location
|
||||
estimations. Filtering (\refeq{eq:recursiveDensity}) thus is highly recommended as minor errors are compensated
|
||||
using other sensors and/or a movement model that prevents the estimation from leaping within the building.
|
||||
However, if wrong sensor values (red) are observed for longer time periods, even filtering will produce erroneous
|
||||
results and might get stranded (density is trapped e.g. within a room),
|
||||
as the movement model is constrained by the actual floorplan.
|
||||
|
||||
|
||||
% -------------------------------- other distributions, unseen APs, etc -------------------------------- %
|
||||
|
||||
To reduce the amount of misclassifications, where other locations within the building are (almost)
|
||||
as likely (see \refeq{eq:wifiProb}) as the pedestrians actual location, we examined various
|
||||
approaches. Unfortunately, none of which provided a viable enhancement under all conditions within
|
||||
the performed walks.
|
||||
|
||||
One possibility to dissolve an equal \docWIFI{}-likelihood between two (or more) locations within in the building
|
||||
is, to not only consider the \docAPshort{}s seen by the Smartphone, but also the \docAPshort{}s not seen
|
||||
by the Smartphone. Maybe there is an \docAP{} that should be visible at the other locations. However,
|
||||
as the Smartphone did not see this \docAPshort{} the other location can be ruled out.
|
||||
While this works in theory, evaluations revealed several issues:
|
||||
|
||||
There is a chance that an \docAPshort{} is unseen during a scan due to packet collisions or
|
||||
temporal effects within the surrounding. It thus might make sense to opt-out other locations
|
||||
only, if at least two \docAPshort{}s are missing. On the other hand, this obviously requires (at least)
|
||||
two \docAPshort{}s to actually be different between the two locations, which might not always be
|
||||
the case.
|
||||
|
||||
Also, this requires the signal strength prediction model to be fairly accurate. Within our testing
|
||||
walks there are several places surrounded by concrete walls, which cause a harsh, local drop in signal strength.
|
||||
The models used within this work will not accurately predict the signal strength for such locations.
|
||||
Including \docAPshort{}s unseen by the Smartphone thus often increases the estimation error instead
|
||||
of fixing the multimodality.
|
||||
|
||||
We therefore examined variations of the probability calculation from \refeq{eq:wifiProb}.
|
||||
Removing the strongest/weakest \docAPshort{} from $\mRssiVecWiFi{}$ yielded similar results.
|
||||
While some estimations were improved, the overall estimation error increased for our walks,
|
||||
as there are many situations where only a handful \docAP{}s can be seen. Removing (valid)
|
||||
information will highly increase the error for such situations.
|
||||
|
||||
Using a more strict exponential distribution for
|
||||
|
||||
\begin{figure}
|
||||
\input{gfx/wifiCompare_normalVsExp_cross.tex}
|
||||
\input{gfx/wifiCompare_normalVsExp_meter.tex}
|
||||
\label{fig:normalVsExponential}
|
||||
\caption{
|
||||
Comparison between normal- (black) and exponential-distribution (red) for \refeq{eq:wifiProb}.
|
||||
While misclassifications are slightly reduced (upper chart),
|
||||
the error between ground-truth and estimation (lower chart) increases by
|
||||
about \SI{1}{\meter} for the median.
|
||||
To reduce the amount such of misclassifications, where other locations within the building are
|
||||
as likely as the pedestrians actual location, we examined various approaches.
|
||||
Unfortunately, none of which provided a viable enhancement under all conditions for the performed walks:
|
||||
|
||||
One possibility to dissolve an equal \docWIFI{}-likelihood between two (or more) locations within in the building
|
||||
is, to not only consider the \docAPshort{}s seen by the Smartphone, but also the \docAPshort{}s not seen
|
||||
by the Smartphone. This additional information can be used to rule out all locations where this
|
||||
\docAP{} should be received (high signal strength from the prediction model).
|
||||
% There might be an \docAP{} that should be visible at the other locations. However,
|
||||
%as the Smartphone did not see this \docAPshort{} the other location can be ruled out.
|
||||
While this works in theory, evaluations revealed several issues:
|
||||
|
||||
There is a chance that even a nearby \docAPshort{} is unseen during a scan due to packet collisions or
|
||||
temporal effects within the surrounding. It thus might make sense to opt-out other locations
|
||||
only, if at least two \docAPshort{}s are missing. On the other hand, this obviously requires (at least)
|
||||
two \docAPshort{}s to actually be different between the two locations, and requires a lot of permanently
|
||||
installed transmitters to work out.
|
||||
|
||||
Furthermore, this requires the signal strength prediction model to be fairly accurate. Within our testing
|
||||
walks, several places are surrounded by concrete walls, which cause a harsh, local drop in signal strength.
|
||||
The models used within this work will not accurately predict the signal strength for such locations.
|
||||
Including \docAPshort{}s unseen by the Smartphone thus often increases the estimation error instead
|
||||
of fixing the multimodality.
|
||||
|
||||
|
||||
|
||||
We therefore examined variations of the probability calculation from \refeq{eq:wifiProb}.
|
||||
Removing the strongest/weakest \docAPshort{} from $\mRssiVecWiFi{}$ yielded similar results.
|
||||
While some estimations were improved, the overall estimation error increased for our walks,
|
||||
as there are many situations where only a handful \docAP{}s can be seen. Removing (valid)
|
||||
information will highly increase the error for such situations.
|
||||
|
||||
Using a more strict exponential distribution for the model vs. scan comparison in \refeq{eq:wifiProb}
|
||||
had a positive effect on the misclassification error for some of the walks, but slightly increased
|
||||
the estimation error (see figure \reffig{fig:normalVsExponential}) and thus produced negative side effects.
|
||||
|
||||
\begin{figure}
|
||||
\input{gfx/wifiCompare_normalVsExp_cross.tex}
|
||||
\input{gfx/wifiCompare_normalVsExp_meter.tex}
|
||||
\label{fig:normalVsExponential}
|
||||
\caption{
|
||||
Comparison between normal- (black) and exponential-distribution (red) for \refeq{eq:wifiProb}.
|
||||
While misclassifications are slightly reduced (upper chart),
|
||||
the median error between ground-truth and estimation (lower chart) increases by
|
||||
about \SI{1}{\meter}.
|
||||
}
|
||||
\end{figure}
|
||||
|
||||
\todo{
|
||||
wir wollen nicht, dass die position des ground-truths durch das wifi so wahrscheinlich wie möglich ist,
|
||||
wir wollen dass die position des ground-truth einfach eine höhere wahrscheinlichkeit hat, als alle anderen punkte im gebäude
|
||||
das pruefen wir ab
|
||||
}
|
||||
\end{figure}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\todo{
|
||||
erkenntnisse:
|
||||
@@ -141,32 +292,33 @@ kann man auch testen wenn man beim particle-filter das resampling ganz aus macht
|
||||
|
||||
}
|
||||
|
||||
\todo{
|
||||
das bbox modell hat probleme an den uebergängen zwischen bboxes da dort teils starke spruenge sind
|
||||
die nicht immer in der realität so auch vorliegen. z.B. z-wechsel machen teils probleme.
|
||||
hier wäre ein kontinuierliches modell hilfreich bzw interpolation in randbereichen
|
||||
}
|
||||
|
||||
\todo{
|
||||
wenn ich beim fingerprinten einen AP an einer stelle NICHT gesehen habe,
|
||||
ist das auch eine aussage für die model optimierung.. da kann dann sicher keine signatlstaerke > -90 an der stelle raus kommen
|
||||
}
|
||||
% REAL WALKS
|
||||
\todo{obwohl das angepasste modell doch recht gut laeuft und der fehler recht klein wird, sind immernoch stellen dabei,
|
||||
wo es einfach nicht gut passt, unguenstige mehrdeutigkeiten vorliegen, oder regionen einfach nicht passen wie sie sollten.
|
||||
das liegt teils auch daran, dass die fingerprints drehend aufgenommen wurden und beim laufen nach hinten durch den
|
||||
menschen abgeschottet wird. auch zeitlicher verzug kann ein problem darstellen.}
|
||||
|
||||
\todo{GPS ist leider kaum eine hilfe. entweder kein empfang wegen ueberdachung oder abschattung, oder
|
||||
zu kurz draußen um einen guten gps-fix zu bekommen.}
|
||||
|
||||
|
||||
\todo{
|
||||
das bbox modell hat probleme an den uebergängen zwischen bboxes da dort teils starke spruenge sind
|
||||
die nicht immer in der realität so auch vorliegen. z.B. z-wechsel machen teils probleme.
|
||||
hier wäre ein kontinuierliches modell hilfreich bzw interpolation in randbereichen
|
||||
}
|
||||
|
||||
\todo{
|
||||
wenn ich beim fingerprinten einen AP an einer stelle NICHT gesehen habe,
|
||||
ist das auch eine aussage für die model optimierung.. da kann dann sicher keine signatlstaerke > -90 an der stelle raus kommen
|
||||
}
|
||||
|
||||
\todo{gps wird so schnell nicht warm, versagt denn auf dem hof als hilfestellung}
|
||||
|
||||
|
||||
|
||||
\todo{
|
||||
wir wollen nicht, dass die position des ground-truths durch das wifi so wahrscheinlich wie möglich ist,
|
||||
wir wollen dass die position des ground-truth einfach eine höhere wahrscheinlichkeit hat, als alle anderen punkte im gebäude
|
||||
das pruefen wir ab
|
||||
}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\input{gfx/compare-wifi-in-out.tex}
|
||||
\caption{
|
||||
Measurable signal strengths of a testing \docAPshort{} (black dot).
|
||||
While the signal diminishes slowly along the corridor (upper rectangle)
|
||||
the metallised windows (dashed outline) attenuate the signal by over \SI{30}{\decibel} (lower rectangle).
|
||||
}
|
||||
\end{figure}
|
||||
|
||||
ware das grid-model nicht da, wuerde der outdoor teil richtig schlecht laufen,
|
||||
weil das wlan hier absolut ungenau ist.. da die partikel aber aufgrund des vorherigen
|
||||
@@ -200,3 +352,6 @@ der einfluss jedoch recht groß sein, siehe den fingerprint plot von
|
||||
dem einen ausgewählten AP
|
||||
|
||||
wenn noch zeit ist: wie aendert sich die model prediction wenn man z.B. nur die haelfte der referenzmessungen nimmt?
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -1,5 +1,10 @@
|
||||
relatedwork
|
||||
|
||||
wifi anfänge von radar (microsoft) etc
|
||||
\cite{radar} \cite{horus} \cite{secureAndRobust}
|
||||
|
||||
|
||||
andere methoden neben signalstärke
|
||||
\cite{TimeDifferenceOfArrival1} \cite{TOAAOA}
|
||||
|
||||
\cite{Ebner-15}
|
||||
|
||||
@@ -24,3 +24,13 @@
|
||||
\newcommand{\docsRSSI}{RSSI}
|
||||
|
||||
\newcommand{\docDSimplex}{downhill-simplex}
|
||||
|
||||
|
||||
|
||||
% optimizations
|
||||
\newcommand{\noOptEmpiric}{empiric params}
|
||||
\newcommand{\optParamsAllAP}{optimization 1}
|
||||
\newcommand{\optParamsEachAP}{optimization 2}
|
||||
\newcommand{\optParamsPosEachAP}{optimization 3}
|
||||
\newcommand{\optPerFloor}{model per floor}
|
||||
\newcommand{\optPerRegion}{model per region}
|
||||
|
||||
Reference in New Issue
Block a user