current TeX

This commit is contained in:
2017-04-25 16:39:58 +02:00
parent fe9c25cde5
commit 6df505d3ae
3 changed files with 116 additions and 82 deletions

View File

@@ -35,6 +35,7 @@
\subsection{Signal Strength Prediction Model}
\label{sec:sigStrengthModel}
\begin{equation}
\mRssi = \mTXP{} + 10 \mPLE{} + \log_{10} \frac{d}{d_0} + \mGaussNoise{}
@@ -97,6 +98,16 @@
\subsection{Model Parameter Optimization}
\begin{figure}[t!]
\input{gfx/wifiop_show_optfunc_params}
\label{fig:wifiOptFuncTXPEXP}
\caption{
The average error (in \SI{}{\decibel}) between all reference measurements and corresponding model predictions
for one \docAPshort{} dependent on \docTXP{} \mTXP{} and \docEXP{} \mPLE{}
[known position $\mPosAPVec{}$, fixed \mWAF{}] denotes a convex function.
}
\end{figure}
For systems that demand a higher accuracy, one can choose a compromise between fingerprinting and
pure empiric model parameters where (some) model parameters are optimized,
based on a few reference measurements throughout the building.
@@ -115,15 +126,7 @@
TODO TODO TODO
\end{equation}
\begin{figure}
\input{gfx/wifiop_show_optfunc_params}
\label{fig:wifiOptFuncTXPEXP}
\caption{
The average error (in \SI{}{\decibel}) between all reference measurements and corresponding model predictions
for one \docAPshort{} dependent on \docTXP{} \mTXP{} and \docEXP{} \mPLE{}
[known position $\mPosAPVec{}$, fixed \mWAF{}] denotes a convex function.
}
\end{figure}
However, optimizing an unknown transmitter position usually means optimizing a non-convex, discontinuous
function, especially when the $z$-coordinate, that influences the number of attenuating floors/ceilings,
@@ -133,7 +136,7 @@
As can be seen in figure \ref{fig:wifiOptFuncPosYZ}, there are two local minima and only one of
both also is a global one.
\begin{figure}
\begin{figure}[t!]
\input{gfx/wifiop_show_optfunc_pos_yz}
\label{fig:wifiOptFuncPosYZ}
\caption{