introduction

This commit is contained in:
2017-04-21 10:02:22 +02:00
parent cb86c22f3d
commit 67a9f02d6d
3 changed files with 99 additions and 44 deletions

View File

@@ -1,17 +1,22 @@
conclusion
\section{Conclusion}
beide ansaetze sind in unserem szenario/gebaeude OK:
bekannte AP-pos + empirische parameter
komplette optimierung über fingerprints
beide ansaetze sind in unserem szenario/gebaeude OK:
bekannte AP-pos + empirische parameter
komplette optimierung über fingerprints
100 prozent optimierung ist nicht moeglich, es gibt
immer stellen, die, zugunsten von anderen, schlechter werden.
es haengt auch stark davon ab, was man optimiert, das modell,
die uebereinstimmung, welche fingerprints [schlechte vs. gute stellen]
100 prozent optimierung ist nicht moeglich, es gibt
immer stellen, die, zugunsten von anderen, schlechter werden.
es haengt auch stark davon ab, was man optimiert, das modell,
die uebereinstimmung, welche fingerprints [schlechte vs. gute stellen]
zudem ist das modell fuer unser gebaeude nicht gut ggeeignet.
zu viele verschiedene materialien und trennwaende, APs immer in raeumen,
nie auf dem flur. viele hindernisse, wenige freie raeume.
andere modelle koennten hier helfen, erfordern dann aber zur
laufzeit mehr berechnung, oder muessten vorab auf einem grid berechnet
werden \todo{cite auf competition}
zudem ist das modell fuer unser gebaeude nicht gut ggeeignet.
zu viele verschiedene materialien und trennwaende, APs immer in raeumen,
nie auf dem flur. viele hindernisse, wenige freie raeume.
andere modelle koennten hier helfen, erfordern dann aber zur
laufzeit mehr berechnung, oder muessten vorab auf einem grid berechnet
werden \todo{cite auf competition}
\section{Future Work}
Komplexere Modelle die vorab berechnet werden und dann einfach in einer
Datenstruktur abgelegt sind, die z.B. interpolation erlaubt etc.

View File

@@ -1,34 +1,82 @@
introduction
\section{Introduction}
State of the art indoor localization systems use a fusion of multiple
(Smartphone) sensors to infer the pedestrian's current location within a building
based on a variety of sensor observations.
%
Among those, the internal IMU, namely accelerometer and gyroscope, is often
used as a core component, that provides accurate relative movement information
like step- and turn-detection. However, this requires the pedestrian's
initial position to be well known, e.g. using a GPS-fix just before
entering the building. Additionally, the sensor's error will sum up over
time.
Depending on the used sensor fusion method, the latter can be addressed,
using a movement model for the pedestrian, that prevents unlikely movements
and locations. However, this will obviously work only to some extent and still
requires the initial position to be at least vaguely known.
%
Thus, indoor localization systems incorporate the knowledge of sensors,
that provide absolute location information like \docWIFI{} and
\docIBeacon{}s. The signal strength of nearby transmitters, received
by the smartphone, yields a vague information about the distance
to each transmitter. While the provided accuracy is relatively low,
it can be stabilized by the IMU and vice versa.
setupzeiten von indoor systemen sind hoch [fingerprinting]
auch re-calibration kostet oft zeit
The downside of such an approach: both sensors require additional prior
knowledge to work: To infer the probability of the pedestrian currently
residing at an arbitrary location, one compares the signal strengths received
by the smartphone with the signal strengths one should receive at this
location (prior knowledge). As \docWIFI{} signals are highly dependent
on the surroundings, those values can change rapidly within meters.
%
That is why fingerprinting became popular: The required prior knowledge
is gathered by manually scanning each location within the building e.g.
using cells with size of \SI{2}{\meter}. While this provides the highest
possible accuracy due to actual measurements of the real situation,
one can easily realize the necessary amount of work for both, the initial
setup and maintenance when transmitters are changed or renovations take
place.
meistens hat man einen gebäudeplan
oft auch die info wo APs hängen
warum das nicht nutzen und mit einer groben AP position
+ fixen, empirischen param starten?
To prevent setup- and maintenance effort, models can be used to predict
the signal strengths one should receive at some arbitrary location.
Depending on the used model, only a few parameters and the location of the
transmitter within the building are required. For newer installations
the latter is often available and tagged within the building's floorplan.
%As signals are attenuated by the buildings architecture like walls and floors,
%advanced models additionally include the floorplan within their prediction.
Obviously, simple models will represent the real signal strengths only
to some extent, as not all ambient conditions, such as walls, are considered.
Furthermore, the choice of the model's parameters depends on the actual setup
and parameters that work within building A might not work out within building B.
was bekomme ich für eine genauigkeit raus?
Thus, a compromise comes to mind, that a few reference measurements used
for a viable model setup might be a valid tradeoff between accuracy and
setup time.
was kann ich machen um das zu verbessern?
model parameter anlernen?
Within this work we will focus on simple signal strength prediction models
that do not incorporate knowledge of nearby walls, but can be used
for real-time applications on commodity smartphones. The to-be-expected accuracy
of those models is analyzed for various setups ranging from just empirical
parameters (no setup time when transmitter positions are known) to optimized
parameters where no prior knowledge is necessary and a few reference measurements
suffice.
wo sind die schwächen?
verschiedene modelle mit unterschiedlichem berechnungsaufwand.
Despite analyzing the \docWIFI{} performance on its own, we will also have
a closer look at the to-be-expected performance within a complete indoor
localization setup using a floorplan-based movement model together with
various sensors via recursive state estimation based on a particle filter.
indoor komplett-system mit IMU, abs-heading, rel-heading, wifi sensor
gebäudeplan, bewegungsmodell
\todo{
fokus:\\
- wlan parameter + optimierung\\
- evaluation der einzel und gesamtergebnisse
}
\todo{
fokus:\\
- wlan parameter + optimierung\\
- evaluation der einzel und gesamtergebnisse
}
\todo{
contribution:\\
- neues wifi modell,\\
- neues resampling,\\
- model param optimierung + eval was es bringt
}
\todo{
contribution?:\\
- neues wifi modell,\\
- neues resampling,\\
- model param optimierung + eval was es bringt
}

View File

@@ -1,3 +1,5 @@
relatedwork
wifi anfänge von radar (microsoft) etc
\cite{Ebner-15}