introduction
This commit is contained in:
@@ -1,17 +1,22 @@
|
|||||||
conclusion
|
\section{Conclusion}
|
||||||
|
|
||||||
beide ansaetze sind in unserem szenario/gebaeude OK:
|
beide ansaetze sind in unserem szenario/gebaeude OK:
|
||||||
bekannte AP-pos + empirische parameter
|
bekannte AP-pos + empirische parameter
|
||||||
komplette optimierung über fingerprints
|
komplette optimierung über fingerprints
|
||||||
|
|
||||||
100 prozent optimierung ist nicht moeglich, es gibt
|
100 prozent optimierung ist nicht moeglich, es gibt
|
||||||
immer stellen, die, zugunsten von anderen, schlechter werden.
|
immer stellen, die, zugunsten von anderen, schlechter werden.
|
||||||
es haengt auch stark davon ab, was man optimiert, das modell,
|
es haengt auch stark davon ab, was man optimiert, das modell,
|
||||||
die uebereinstimmung, welche fingerprints [schlechte vs. gute stellen]
|
die uebereinstimmung, welche fingerprints [schlechte vs. gute stellen]
|
||||||
|
|
||||||
zudem ist das modell fuer unser gebaeude nicht gut ggeeignet.
|
zudem ist das modell fuer unser gebaeude nicht gut ggeeignet.
|
||||||
zu viele verschiedene materialien und trennwaende, APs immer in raeumen,
|
zu viele verschiedene materialien und trennwaende, APs immer in raeumen,
|
||||||
nie auf dem flur. viele hindernisse, wenige freie raeume.
|
nie auf dem flur. viele hindernisse, wenige freie raeume.
|
||||||
andere modelle koennten hier helfen, erfordern dann aber zur
|
andere modelle koennten hier helfen, erfordern dann aber zur
|
||||||
laufzeit mehr berechnung, oder muessten vorab auf einem grid berechnet
|
laufzeit mehr berechnung, oder muessten vorab auf einem grid berechnet
|
||||||
werden \todo{cite auf competition}
|
werden \todo{cite auf competition}
|
||||||
|
|
||||||
|
\section{Future Work}
|
||||||
|
|
||||||
|
Komplexere Modelle die vorab berechnet werden und dann einfach in einer
|
||||||
|
Datenstruktur abgelegt sind, die z.B. interpolation erlaubt etc.
|
||||||
|
|||||||
@@ -1,34 +1,82 @@
|
|||||||
introduction
|
\section{Introduction}
|
||||||
|
|
||||||
|
State of the art indoor localization systems use a fusion of multiple
|
||||||
|
(Smartphone) sensors to infer the pedestrian's current location within a building
|
||||||
|
based on a variety of sensor observations.
|
||||||
|
%
|
||||||
|
Among those, the internal IMU, namely accelerometer and gyroscope, is often
|
||||||
|
used as a core component, that provides accurate relative movement information
|
||||||
|
like step- and turn-detection. However, this requires the pedestrian's
|
||||||
|
initial position to be well known, e.g. using a GPS-fix just before
|
||||||
|
entering the building. Additionally, the sensor's error will sum up over
|
||||||
|
time.
|
||||||
|
|
||||||
setupzeiten von indoor systemen sind hoch [fingerprinting]
|
Depending on the used sensor fusion method, the latter can be addressed,
|
||||||
auch re-calibration kostet oft zeit
|
using a movement model for the pedestrian, that prevents unlikely movements
|
||||||
|
and locations. However, this will obviously work only to some extent and still
|
||||||
|
requires the initial position to be at least vaguely known.
|
||||||
|
%
|
||||||
|
Thus, indoor localization systems incorporate the knowledge of sensors,
|
||||||
|
that provide absolute location information like \docWIFI{} and
|
||||||
|
\docIBeacon{}s. The signal strength of nearby transmitters, received
|
||||||
|
by the smartphone, yields a vague information about the distance
|
||||||
|
to each transmitter. While the provided accuracy is relatively low,
|
||||||
|
it can be stabilized by the IMU and vice versa.
|
||||||
|
|
||||||
|
|
||||||
|
The downside of such an approach: both sensors require additional prior
|
||||||
|
knowledge to work: To infer the probability of the pedestrian currently
|
||||||
|
residing at an arbitrary location, one compares the signal strengths received
|
||||||
|
by the smartphone with the signal strengths one should receive at this
|
||||||
|
location (prior knowledge). As \docWIFI{} signals are highly dependent
|
||||||
|
on the surroundings, those values can change rapidly within meters.
|
||||||
|
%
|
||||||
|
That is why fingerprinting became popular: The required prior knowledge
|
||||||
|
is gathered by manually scanning each location within the building e.g.
|
||||||
|
using cells with size of \SI{2}{\meter}. While this provides the highest
|
||||||
|
possible accuracy due to actual measurements of the real situation,
|
||||||
|
one can easily realize the necessary amount of work for both, the initial
|
||||||
|
setup and maintenance when transmitters are changed or renovations take
|
||||||
|
place.
|
||||||
|
|
||||||
|
To prevent setup- and maintenance effort, models can be used to predict
|
||||||
|
the signal strengths one should receive at some arbitrary location.
|
||||||
|
Depending on the used model, only a few parameters and the location of the
|
||||||
|
transmitter within the building are required. For newer installations
|
||||||
|
the latter is often available and tagged within the building's floorplan.
|
||||||
|
%As signals are attenuated by the buildings architecture like walls and floors,
|
||||||
|
%advanced models additionally include the floorplan within their prediction.
|
||||||
|
Obviously, simple models will represent the real signal strengths only
|
||||||
|
to some extent, as not all ambient conditions, such as walls, are considered.
|
||||||
|
Furthermore, the choice of the model's parameters depends on the actual setup
|
||||||
|
and parameters that work within building A might not work out within building B.
|
||||||
|
|
||||||
|
Thus, a compromise comes to mind, that a few reference measurements used
|
||||||
|
for a viable model setup might be a valid tradeoff between accuracy and
|
||||||
|
setup time.
|
||||||
|
|
||||||
|
Within this work we will focus on simple signal strength prediction models
|
||||||
|
that do not incorporate knowledge of nearby walls, but can be used
|
||||||
|
for real-time applications on commodity smartphones. The to-be-expected accuracy
|
||||||
|
of those models is analyzed for various setups ranging from just empirical
|
||||||
|
parameters (no setup time when transmitter positions are known) to optimized
|
||||||
|
parameters where no prior knowledge is necessary and a few reference measurements
|
||||||
|
suffice.
|
||||||
|
|
||||||
|
Despite analyzing the \docWIFI{} performance on its own, we will also have
|
||||||
|
a closer look at the to-be-expected performance within a complete indoor
|
||||||
|
localization setup using a floorplan-based movement model together with
|
||||||
|
various sensors via recursive state estimation based on a particle filter.
|
||||||
|
|
||||||
meistens hat man einen gebäudeplan
|
\todo{
|
||||||
oft auch die info wo APs hängen
|
fokus:\\
|
||||||
warum das nicht nutzen und mit einer groben AP position
|
- wlan parameter + optimierung\\
|
||||||
+ fixen, empirischen param starten?
|
- evaluation der einzel und gesamtergebnisse
|
||||||
|
}
|
||||||
|
|
||||||
was bekomme ich für eine genauigkeit raus?
|
\todo{
|
||||||
|
contribution?:\\
|
||||||
was kann ich machen um das zu verbessern?
|
- neues wifi modell,\\
|
||||||
model parameter anlernen?
|
- neues resampling,\\
|
||||||
|
- model param optimierung + eval was es bringt
|
||||||
wo sind die schwächen?
|
}
|
||||||
verschiedene modelle mit unterschiedlichem berechnungsaufwand.
|
|
||||||
|
|
||||||
indoor komplett-system mit IMU, abs-heading, rel-heading, wifi sensor
|
|
||||||
gebäudeplan, bewegungsmodell
|
|
||||||
|
|
||||||
\todo{
|
|
||||||
fokus:\\
|
|
||||||
- wlan parameter + optimierung\\
|
|
||||||
- evaluation der einzel und gesamtergebnisse
|
|
||||||
}
|
|
||||||
|
|
||||||
\todo{
|
|
||||||
contribution:\\
|
|
||||||
- neues wifi modell,\\
|
|
||||||
- neues resampling,\\
|
|
||||||
- model param optimierung + eval was es bringt
|
|
||||||
}
|
|
||||||
|
|||||||
@@ -1,3 +1,5 @@
|
|||||||
relatedwork
|
relatedwork
|
||||||
|
|
||||||
|
wifi anfänge von radar (microsoft) etc
|
||||||
|
|
||||||
\cite{Ebner-15}
|
\cite{Ebner-15}
|
||||||
|
|||||||
Reference in New Issue
Block a user