current TeX
minor code changes for GFX
This commit is contained in:
@@ -4,12 +4,12 @@
|
||||
|
||||
All optimizations and evaluations took place within two adjacent buildings (4 and 2 floors, respectively)
|
||||
and two connected outdoor regions (entrance and inner courtyard),
|
||||
yielding a total size of \SI{110}{\meter} x \SI{60}{\meter}.
|
||||
\SI{110}{\meter} x \SI{60}{\meter} in size.
|
||||
|
||||
Within all \docWIFI{} observations we only consider the \docAP{}s that are permanently installed,
|
||||
and can be identified by their well-known MAC address.
|
||||
Temporal and movable transmitters are ignored as they might cause estimation errors.
|
||||
|
||||
Temporal and movable transmitters like smart TVs or smartphone hotspots are ignored as they might cause estimation errors.
|
||||
%
|
||||
Unfortunately, due to non-disclosure agreements, we are not allowed to depict the actual location
|
||||
of installed transmitters within the following figures.
|
||||
|
||||
@@ -28,37 +28,58 @@
|
||||
|
||||
\subsection{Model optimization}
|
||||
|
||||
As the signal strength prediction model is the heart of the absolute positioning component
|
||||
described in \ref{sec:system} we start with the model parameter estimation (see \ref{sec:optimization}) for
|
||||
\mTXP, \mPLE and \mWAF based on some reference measurements and compare the results
|
||||
between various optimization strategies and a basic empiric choice of \mTXP = \SI{-40}{\decibel{}m} @ \SI{1}{\meter}
|
||||
(defined by the usual \docAPshort{} transmit power for europe), a path loss exponent $\mPLE \approx $ \SI{2.5} and
|
||||
$\mWAF \approx$ \SI{-8}{\decibel} per floor/ceiling (made of reinforced concrete) \todo{cite für werte}.
|
||||
As the signal strength prediction model is the core of the absolute positioning component
|
||||
described in section \ref{sec:system}, we start with the model parameter estimation (see \ref{sec:optimization}) for
|
||||
\mTXP{}, \mPLE{} and \mWAF{} based on some reference measurements and compare the results
|
||||
between various optimization strategies and a basic empiric choice of \mTXP{} = \SI{-40}{\decibel{}m} @ \SI{1}{\meter}
|
||||
(defined by the usual \docAPshort{} transmit power for europe), a path loss exponent $\mPLE{} \approx $ \SI{2.5} and
|
||||
$\mWAF{} \approx$ \SI{-8}{\decibel} per floor / ceiling (made of reinforced concrete) \todo{cite für werte}.
|
||||
|
||||
Figure \ref{fig:referenceMeasurements} depicts the location of the used 121 reference measurements.
|
||||
Each location was scanned 30 times ($\approx$ \SI{25}{\second} scan time),
|
||||
non permanent \docAP{}s were removed, the values were grouped per physical transmitter (see \ref{sec:vap})
|
||||
and aggregated to form the average signal strength per transmitter.
|
||||
|
||||
% used reference measurements
|
||||
\begin{figure}
|
||||
{
|
||||
\centering
|
||||
\input{gfx/all_fingerprints.tex}
|
||||
}
|
||||
\caption{
|
||||
Locations of the 121 reference measurements.
|
||||
The size of each square denotes the number of permanently installed \docAPshort{}s
|
||||
that are visible at this location,
|
||||
and ranges between 2 and 22 with an average of 9.
|
||||
}
|
||||
\label{fig:referenceMeasurements}
|
||||
\begin{subfigure}[t!]{0.48\textwidth}
|
||||
\input{gfx2/all_fingerprints.tex}
|
||||
\caption{
|
||||
The size of each square denotes the number of permanently installed \docAPshort{}s
|
||||
that were visible while scanning, and ranges between 2 and 22 with an average of 9.
|
||||
}
|
||||
\label{fig:referenceMeasurements}
|
||||
\end{subfigure}
|
||||
\enskip\enskip
|
||||
\begin{subfigure}[t!]{0.48\textwidth}
|
||||
\input{gfx2/model-bboxes.tex}
|
||||
\caption{
|
||||
More than one bounding box is needed for each model to approximate the building's shape.
|
||||
Each distinct floor-color denotes a single model (7 in total).
|
||||
}
|
||||
\label{fig:modelBBoxes}
|
||||
\end{subfigure}
|
||||
\caption{Locations of the 121 reference measurements (left) and bounding-boxes used for {\em \optPerRegion{}} (right).}
|
||||
\end{figure}
|
||||
|
||||
% used reference measurements
|
||||
%\begin{figure}
|
||||
% {
|
||||
% \centering
|
||||
% \input{gfx/all_fingerprints.tex}
|
||||
% }
|
||||
% \caption{
|
||||
% Locations of the 121 reference measurements.
|
||||
% The size of each square denotes the number of permanently installed \docAPshort{}s
|
||||
% that are visible at this location,
|
||||
% and ranges between 2 and 22 with an average of 9.
|
||||
% }
|
||||
% \label{fig:referenceMeasurements}
|
||||
%\end{figure}
|
||||
|
||||
% visible APs:
|
||||
% cnt(121) min(2.000000) max(22.000000) range(20.000000) med(8.000000) avg(9.322314) stdDev(4.386709)
|
||||
|
||||
\begin{figure}[b]
|
||||
\begin{figure}
|
||||
\centering
|
||||
\input{gfx/compare-wifi-in-out.tex}
|
||||
\caption{
|
||||
@@ -83,7 +104,7 @@
|
||||
with its position, which is well known from the floorplan.
|
||||
|
||||
{\em\optParamsAllAP{}} is the same as above, except that the three parameters are optimized
|
||||
using the reference measurements.
|
||||
using the reference measurements. However, all transmitters share the same three parameters.
|
||||
|
||||
{\em\optParamsEachAP{}} optimizes the three parameters per \docAP{} instead of using the same
|
||||
parameters for all.
|
||||
@@ -93,8 +114,7 @@
|
||||
|
||||
{\em\optPerFloor{}} and {\em\optPerRegion{}} are just like \optParamsPosEachAP{} except that
|
||||
there are several sub-models that are optimized for one floor / region instead of the whole building.
|
||||
|
||||
\todo{grafik, die die regionen zeigt???}
|
||||
The chosen bounding boxes and resulting sub-models are depicted in figure \ref{fig:modelBBoxes}.
|
||||
|
||||
Figure \ref{fig:wifiModelError} shows the optimization results for all strategies, which are as expected:
|
||||
The estimation error is indirectly proportional to the number of optimized parameters.
|
||||
@@ -108,15 +128,40 @@
|
||||
For \SI{68}{\percent} of all installed transmitters, the estimated floor-number matched the real location.
|
||||
|
||||
\begin{figure}
|
||||
\input{gfx/wifi_model_error_0_95.tex}
|
||||
%\input{gfx/wifi_model_error_95_100.tex}
|
||||
\begin{subfigure}{0.52\textwidth}
|
||||
\input{gfx2/wifi_model_error_0_95.tex}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.23\textwidth}
|
||||
\input{gfx/wifiMaxErrorNN_opt0.tex}
|
||||
\caption{\em \noOptEmpiric{}}
|
||||
\end{subfigure}
|
||||
%\begin{subfigure}{0.25\textwidth}
|
||||
% \input{gfx/wifiMaxErrorNN_opt3.tex}
|
||||
%\end{subfigure}
|
||||
\begin{subfigure}{0.23\textwidth}
|
||||
\input{gfx/wifiMaxErrorNN_opt5.tex}
|
||||
\caption{\em \optPerRegion{}}
|
||||
\end{subfigure}
|
||||
\caption{
|
||||
Comparison between different optimization strategies by examining the error (in \decibel) at each reference measurement.
|
||||
The higher the number of variable parameters, the better the model resembles real world conditions.
|
||||
Both figures on the right depict the highest error for each reference measurement, where full red means $\ge$ \SI{20}{\decibel}.
|
||||
}
|
||||
\label{fig:wifiModelError}
|
||||
\end{figure}
|
||||
|
||||
|
||||
|
||||
%\begin{figure}
|
||||
% \input{gfx/wifi_model_error_0_95.tex}
|
||||
% %\input{gfx/wifi_model_error_95_100.tex}
|
||||
% \caption{
|
||||
% Comparison between different optimization strategies by examining the error (in \decibel) at each reference measurement.
|
||||
% The higher the number of variable parameters, the better the model resembles real world conditions.
|
||||
% }
|
||||
% \label{fig:wifiModelError}
|
||||
%\end{figure}
|
||||
|
||||
% statds:
|
||||
%TXP: cnt(34) min(-67.698959) max(4.299183) range(71.998146) med(-41.961170) avg(-41.659286) stdDev(17.742294)
|
||||
%EXP: cnt(34) min(0.932817) max(4.699000) range(3.766183) med(2.380410) avg(2.546959) stdDev(1.074687)
|
||||
@@ -149,17 +194,34 @@
|
||||
(average \SIrange{2.0}{6.2}{\decibel}), as it needs at least a certain number of measurements for each
|
||||
of its regions for the optimization to converge.
|
||||
|
||||
\begin{figure}[b]
|
||||
\input{gfx/wifi_model_error_num_fingerprints_method_5_0_90.tex}
|
||||
\input{gfx/wifi_model_error_num_fingerprints_method_5_90_100.tex}
|
||||
\caption{%
|
||||
Impact of reducing the number of reference measurements during optimization on {\em \optPerRegion{}}.
|
||||
The model's cumulative error distribution is determined by comparing the its signal strength prediction against all 121 measurements.
|
||||
\begin{figure}
|
||||
\begin{subfigure}{0.49\textwidth}
|
||||
\input{gfx2/wifi_model_error_num_fingerprints_method_5_0_90.tex}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.49\textwidth}
|
||||
\input{gfx2/wifi_model_error_num_fingerprints_method_5_90_100.tex}
|
||||
\end{subfigure}
|
||||
\caption{
|
||||
Impact of reducing the number of reference measurements for optimizing {\em \optPerRegion{}}.
|
||||
The cumulative error distribution is determined by comparing its signal strength prediction against all 121 measurements.
|
||||
While using only \SI{50}{\percent} of the 121 scans has barely an impact on the error,
|
||||
30 measurements (\SI{25}{\percent}) are clearly insufficient.
|
||||
}%
|
||||
\label{fig:wifiNumFingerprints}%
|
||||
}
|
||||
\label{fig:wifiNumFingerprints}
|
||||
\end{figure}
|
||||
|
||||
|
||||
%\begin{figure}[b]
|
||||
% \input{gfx/wifi_model_error_num_fingerprints_method_5_0_90.tex}
|
||||
% \input{gfx/wifi_model_error_num_fingerprints_method_5_90_100.tex}
|
||||
% \caption{%
|
||||
% Impact of reducing the number of reference measurements during optimization on {\em \optPerRegion{}}.
|
||||
% The model's cumulative error distribution is determined by comparing the its signal strength prediction against all 121 measurements.
|
||||
% While using only \SI{50}{\percent} of the 121 scans has barely an impact on the error,
|
||||
% 30 measurements (\SI{25}{\percent}) are clearly insufficient.
|
||||
% }%
|
||||
% \label{fig:wifiNumFingerprints}%
|
||||
%\end{figure}
|
||||
|
||||
Figure \ref{fig:wifiNumFingerprints} depicts the impact of reducing the number of reference measurements
|
||||
during the optimization process for the {\em \optPerRegion{}} strategy.
|
||||
|
||||
@@ -147,7 +147,7 @@
|
||||
\centering
|
||||
\begin{subfigure}{0.48\textwidth}
|
||||
%\centering
|
||||
\input{gfx/wifiop_show_optfunc_params}
|
||||
\input{gfx2/wifiop_show_optfunc_params}
|
||||
\caption{
|
||||
Modifying \docTXP{} \mTXP{} and \docEXP{} \mPLE{}
|
||||
[known position $\mPosAPVec{}$, fixed \mWAF{}] denotes a convex function.
|
||||
@@ -157,7 +157,7 @@
|
||||
\enskip\enskip
|
||||
\begin{subfigure}{0.48\textwidth}
|
||||
%\centering
|
||||
\input{gfx/wifiop_show_optfunc_pos_yz}
|
||||
\input{gfx2/wifiop_show_optfunc_pos_yz}
|
||||
\caption{
|
||||
Modifying $y$- and $z$-position [fixed $x$, \mTXP{}, \mPLE{} and \mWAF{}]
|
||||
denotes a non-convex function with multiple local minima.
|
||||
|
||||
Reference in New Issue
Block a user