This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
Indoor/grid/walk/v3/Helper.h
2017-11-15 16:41:57 +01:00

320 lines
8.6 KiB
C++

#ifndef INDOOR_GW3_HELPER_H
#define INDOOR_GW3_HELPER_H
#include "../../../nav/dijkstra/Dijkstra.h"
#include "../../Grid.h"
#include "Structs.h"
#include <vector>
#include <set>
#include <KLib/math/random/RandomIterator.h>
//#define SHOW_DEBUG_PLOT
#ifdef SHOW_DEBUG_PLOT
#include <KLib/misc/gnuplot/Gnuplot.h>
#include <KLib/misc/gnuplot/GnuplotPlot.h>
#include <KLib/misc/gnuplot/GnuplotPlotElementColorPoints.h>
#endif
namespace GW3 {
/** get an iterator over all nodes reachable from the given start */
template <typename Node> class ReachableIteratorSorted {
const Grid<Node>& grid;
const Node& start;
struct Next {
uint32_t idx;
float distToStart;
Next(uint32_t idx, float distToStart) : idx(idx), distToStart(distToStart) {;}
/** compare by weight. same weight? : compare by pointer */
bool operator < (const Next& o) const {
return (distToStart != o.distToStart) ? (distToStart < o.distToStart) : (idx < o.idx);
}
};
Node* curNode = nullptr;
std::unordered_set<uint32_t> visited;
std::set<Next> toVisit;
public:
ReachableIteratorSorted(const Grid<Node>& grid, const Node& start) : grid(grid), start(start) {
toVisit.insert(Next(start.getIdx(),0));
}
bool hasNext() const {
return !toVisit.empty();
}
const Node& next() {
const Next cur = *(toVisit.begin()); // visit from inside out (needed for correct distance)
toVisit.erase(toVisit.begin());
visited.insert(cur.idx);
const Node& curNode = grid[cur.idx];
for (int i = 0; i < curNode.getNumNeighbors(); ++i) {
const int neighborIdx = curNode.getNeighborIdx(i);
const Node& neighbor = grid[neighborIdx];
const float newDist = cur.distToStart + curNode.getDistanceInMeter(neighbor);
// not yet reached -> store distance
if (visited.find(neighborIdx) == visited.end()) {
toVisit.insert(Next(neighborIdx, newDist));
}
}
// done
return curNode;
}
};
/**
* data-structure to track to-be-visited nodes
* push_back, pop_front
* as pop_front is costly, we omit the pop and use a head-index instead
* memory-consumption vs speed
*/
struct ToVisit {
size_t nextIdx = 0;
std::vector<uint32_t> vec;
ToVisit() {vec.reserve(256);}
void add(const uint32_t nodeIdx) {vec.push_back(nodeIdx);}
uint32_t next() {return vec[nextIdx++];}
bool empty() const {return nextIdx >= vec.size();}
};
/** get an iterator over all nodes reachable from the given start */
template <typename Node, typename Conditions> class ReachableIteratorUnsorted {
const Grid<Node>& grid;
const Node& start;
Node* curNode = nullptr;
std::unordered_set<uint32_t> visited;
ToVisit toVisit;
Conditions cond;
public:
ReachableIteratorUnsorted(const Grid<Node>& grid, const Node& start, const Conditions cond) : grid(grid), start(start), cond(cond) {
toVisit.add(start.getIdx());
}
bool hasNext() const {
return !toVisit.empty();
}
//const Node& next(const std::function<bool(const Node&)>& skip) {
//template <typename Skip> const Node& next(const Skip skip) {
const Node& next() {
// get the next to-be-visited node
const uint32_t curIdx = toVisit.next(); //visit from inside out (needed for correct distance)
const Node& curNode = grid[curIdx];
// mark as "visited"
visited.insert(curIdx);
// get all neighbors
const int numNeighbors = curNode.getNumNeighbors();
for (int i = 0; i < numNeighbors; ++i) {
const uint32_t neighborIdx = curNode.getNeighborIdx(i);
const Node& neighbor = grid[neighborIdx];
const bool visit = cond.visit(neighbor) ;
// not yet reached -> store distance
if (visit) {
if (visited.find(neighborIdx) == visited.end()) {
toVisit.add(neighborIdx);
}
}
}
// done
return curNode;
}
};
struct ReachableSettings {
float dist_m;
bool limitDistance = true;
Heading heading = Heading(0);
float maxHeadingDiff_rad;
bool limitHeading = false;
};
template <typename Node> class Helper {
public:
static GridPoint p3ToGp(const Point3 p) {
const Point3 p100 = p*100;
return GridPoint( std::round(p100.x), std::round(p100.y), std::round(p100.z) );
}
static Point3 gpToP3(const GridPoint gp) {
return Point3(gp.x_cm / 100.0f, gp.y_cm / 100.0f, gp.z_cm / 100.0f);
}
/** does the given grid-node contain the provided point-in-question? */
static bool contains(const Grid<Node>& grid, const Node* n, Point2 pt) {
const float gridSize_m = grid.getGridSize_cm() / 100.0f;
const float d = gridSize_m / 2.0f;
const Point2 pMin = n->inMeter().xy() - Point2(d, d);
const Point2 pMax = n->inMeter().xy() + Point2(d, d);
const BBox2 bbox(pMin, pMax);
return bbox.contains(pt);
}
/** does one of the given grid-nodes contains the provided point-in-question? */
static const Node* contains(const Grid<Node>& grid, const Nodes<Node>& nodes, Point2 pt) {
for (const Node* n : nodes) {
if (contains(grid, n, pt)) {return n;}
}
return nullptr;
}
/** get all possible walks from start within a given region */
static Walks<Node> getAllPossibleWalks(Grid<Node>& grid, const Node* start, const float dist_m) {
struct Access {
Grid<Node>& grid;
Access(Grid<Node>& grid) : grid(grid) {;}
int getNumNeighbors(const Node& n) const {return n.getNumNeighbors();}
Node* getNeighbor(const Node& n, const int idx) const {return &grid.getNeighbor(n, idx);}
float getWeightBetween(const Node& n1, const Node& n2) const {return n1.inMeter().getDistance(n2.inMeter());}
} acc(grid);
const float addDist_m = grid.getGridSize_cm() / 100.0f;
const float maxDist_m = dist_m * 1.1 + addDist_m;
Dijkstra<Node> dijkstra;
dijkstra.build(start, nullptr, acc, maxDist_m);
const std::unordered_map<const Node*, DijkstraNode<Node>*>& nodes = dijkstra.getNodes();
Walks<Node> walks;
for (const auto& it : nodes) {
Walk<Node> walk;
DijkstraNode<Node>* node = it.second;
do {
const Node* gridNode = node->element;
walk.insert(walk.begin(), gridNode); // push_front() as dijkstra is inverted
node = node->previous;
} while (node);
walks.push_back(walk);
}
return walks;
}
/** get all reachable nodes that are within a given range */
static Nodes<Node> getAllReachableNodes(Grid<Node>& grid, const Node* start, const ReachableSettings& set ) {
//auto tStart = std::chrono::system_clock::now();
Nodes<Node> res;
std::unordered_map<uint32_t, float> distances;
std::vector<uint32_t> toVisit; // std::queue was only barely faster: 900 vs 880 microseconds
toVisit.push_back(start->getIdx());
distances[start->getIdx()] = 0.0f;
#ifdef SHOW_DEBUG_PLOT
static K::Gnuplot gp;
K::GnuplotPlot plot;
K::GnuplotPlotElementColorPoints pts1; pts1.setPointType(7); pts1.setPointSize(1);
plot.add(&pts1);
#endif
while (!toVisit.empty()) {
const int curIdx = toVisit.front(); // visit from inside out (needed for correct distance)
toVisit.erase(toVisit.begin());
const Node& curNode = grid[curIdx];
const float curDistance = distances[curIdx];
res.push_back(&curNode); // remember for output
#ifdef SHOW_DEBUG_PLOT
pts1.add(K::GnuplotPoint2(curNode.x_cm, curNode.y_cm), curDistance);
gp.draw(plot);
gp.flush();
#endif
for (int i = 0; i < curNode.getNumNeighbors(); ++i) {
const int neighborIdx = curNode.getNeighborIdx(i);
const Node& neighbor = grid[neighborIdx];
const float addDist = neighbor.getDistanceInMeter(curNode);
const float totalDist = curDistance + addDist;
// this is like in dijkstra. keep the smallest distance to reach a node:
// not yet reached -> store distance
if (distances.find(neighborIdx) == distances.end()) {
distances[neighborIdx] = totalDist;
if (set.limitDistance) {
if (totalDist > set.dist_m) {continue;}
}
if (set.limitHeading) {
const Heading head(start->x_cm, start->y_cm, neighbor.x_cm, neighbor.y_cm); // angle between start and current node
const float diff = head.getDiffHalfRAD(set.heading); // difference between above angle and requested angle
if (diff > set.maxHeadingDiff_rad) {continue;} // more than 90 degree difference? -> ignore
}
toVisit.push_back(neighborIdx); // needs a visit? (still some distance left)
// reached earlier but found shorter way
} else if (distances[neighborIdx] > totalDist) {
distances[neighborIdx] = totalDist;
}
}
}
//auto tEnd = std::chrono::system_clock::now();
//auto elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(tEnd - tStart);
//std::cout << elapsed.count() << std::endl;
return res;
}
};
}
#endif // INDOOR_GW3_HELPER_H