This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
Indoor/lib/simple_fft/check_fft.hpp
2018-01-24 11:44:08 +01:00

565 lines
22 KiB
C++

#ifndef __SIMPLE_FFT__CHECK_FFT_HPP__
#define __SIMPLE_FFT__CHECK_FFT_HPP__
#include "fft_settings.h"
#include "error_handling.hpp"
#include "copy_array.hpp"
#include <cstddef>
#include <cmath>
#include <numeric>
using std::size_t;
namespace simple_fft {
namespace check_fft_private {
enum CheckMode
{
CHECK_FFT_PARSEVAL,
CHECK_FFT_ENERGY,
CHECK_FFT_EQUALITY
};
template <class TArray1D, class TComplexArray1D>
void getMaxAbsoluteAndRelativeErrorNorms(const TArray1D & array1,
const TComplexArray1D & array2, const size_t size,
real_type & max_absolute_error_norm,
real_type & max_relative_error_norm)
{
using std::abs;
real_type current_error;
// NOTE: no parallelization here, it is a completely sequential loop!
for(size_t i = 0; i < size; ++i) {
#ifdef __USE_SQUARE_BRACKETS_FOR_ELEMENT_ACCESS_OPERATOR
current_error = abs(array1[i] - array2[i]);
#else
current_error = abs(array1(i) - array2(i));
#endif
if (current_error > max_absolute_error_norm) {
max_absolute_error_norm = current_error;
#ifdef __USE_SQUARE_BRACKETS_FOR_ELEMENT_ACCESS_OPERATOR
if (abs(array1[i]) > abs(array2[i])) {
max_relative_error_norm = (abs(array1[i]) > 1e-20
? max_absolute_error_norm / abs(array1[i])
: 0.0);
}
else {
max_relative_error_norm = (abs(array2[i]) > 1e-20
? max_absolute_error_norm / abs(array2[i])
: 0.0);
}
#else
if (abs(array1(i)) > abs(array2(i))) {
max_relative_error_norm = (abs(array1(i)) > 1e-20
? max_absolute_error_norm / abs(array1(i))
: 0.0);
}
else {
max_relative_error_norm = (abs(array2(i)) > 1e-20
? max_absolute_error_norm / abs(array2(i))
: 0.0);
}
#endif
}
}
}
template <class TArray2D, class TComplexArray2D>
void getMaxAbsoluteAndRelativeErrorNorms(const TArray2D & array1,
const TComplexArray2D & array2,
const size_t size1, const size_t size2,
real_type & max_absolute_error_norm,
real_type & max_relative_error_norm)
{
using std::abs;
real_type current_error;
// NOTE: no parallelization here, it is a completely sequential loop!
for(int i = 0; i < static_cast<int>(size1); ++i) {
for(int j = 0; j < static_cast<int>(size2); ++j) {
#ifdef __USE_SQUARE_BRACKETS_FOR_ELEMENT_ACCESS_OPERATOR
current_error = abs(array1[i][j] - array2[i][j]);
#else
current_error = abs(array1(i,j) - array2(i,j));
#endif
if (current_error > max_absolute_error_norm) {
max_absolute_error_norm = current_error;
#ifdef __USE_SQUARE_BRACKETS_FOR_ELEMENT_ACCESS_OPERATOR
if (abs(array1[i][j]) > abs(array2[i][j])) {
max_relative_error_norm = (abs(array1[i][j]) > 1e-20
? max_absolute_error_norm / abs(array1[i][j])
: 0.0);
}
else {
max_relative_error_norm = (abs(array2[i][j]) > 1e-20
? max_absolute_error_norm / abs(array2[i][j])
: 0.0);
}
#else
if (abs(array1(i,j)) > abs(array2(i,j))) {
max_relative_error_norm = (abs(array1(i,j)) > 1e-20
? max_absolute_error_norm / abs(array1(i,j))
: 0.0);
}
else {
max_relative_error_norm = (abs(array2(i,j)) > 1e-20
? max_absolute_error_norm / abs(array2(i,j))
: 0.0);
}
#endif
}
}
}
}
template <class TArray3D, class TComplexArray3D>
void getMaxAbsoluteAndRelativeErrorNorms(const TArray3D & array1, const TComplexArray3D & array2,
const size_t size1, const size_t size2,
const size_t size3, real_type & max_absolute_error_norm,
real_type & max_relative_error_norm)
{
using std::abs;
real_type current_error;
// NOTE: no parallelization here, it is a completely sequential loop!
for(int i = 0; i < static_cast<int>(size1); ++i) {
for(int j = 0; j < static_cast<int>(size2); ++j) {
for(int k = 0; k < static_cast<int>(size3); ++k) {
#ifdef __USE_SQUARE_BRACKETS_FOR_ELEMENT_ACCESS_OPERATOR
current_error = abs(array1[i][j][k] - array2[i][j][k]);
#else
current_error = abs(array1(i,j,k) - array2(i,j,k));
#endif
if (current_error > max_absolute_error_norm) {
max_absolute_error_norm = current_error;
#ifdef __USE_SQUARE_BRACKETS_FOR_ELEMENT_ACCESS_OPERATOR
if (abs(array1[i][j][k]) > abs(array2[i][j][k])) {
max_relative_error_norm = (abs(array1[i][j][k]) > 1e-20
? max_absolute_error_norm / abs(array1[i][j][k])
: 0.0);
}
else {
max_relative_error_norm = (abs(array2[i][j][k]) > 1e-20
? max_absolute_error_norm / abs(array2[i][j][k])
: 0.0);
}
#else
if (abs(array1(i,j,k)) > abs(array2(i,j,k))) {
max_relative_error_norm = (abs(array1(i,j,k)) > 1e-20
? max_absolute_error_norm / abs(array1(i,j,k))
: 0.0);
}
else {
max_relative_error_norm = (abs(array2(i,j,k)) > 1e-20
? max_absolute_error_norm / abs(array2(i,j,k))
: 0.0);
}
#endif
}
}
}
}
}
template <class TArray1D>
real_type squareAbsAccumulate(const TArray1D & array, const size_t size,
const real_type init)
{
int size_signed = static_cast<int>(size);
real_type sum = init;
using std::abs;
#ifndef __clang__
#ifdef __USE_OPENMP
#pragma omp parallel for reduction(+:sum)
#endif
#endif
for(int i = 0; i < size_signed; ++i) {
#ifdef __USE_SQUARE_BRACKETS_FOR_ELEMENT_ACCESS_OPERATOR
sum += abs(array[i] * array[i]);
#else
sum += abs(array(i) * array(i));
#endif
}
return sum;
}
template <class TArray2D>
real_type squareAbsAccumulate(const TArray2D & array, const size_t size1,
const size_t size2, const real_type init)
{
int size1_signed = static_cast<int>(size1);
int size2_signed = static_cast<int>(size2);
real_type sum = init;
using std::abs;
#ifndef __clang__
#ifdef __USE_OPENMP
#pragma omp parallel for reduction(+:sum)
#endif
#endif
for(int i = 0; i < size1_signed; ++i) {
for(int j = 0; j < size2_signed; ++j) {
#ifdef __USE_SQUARE_BRACKETS_FOR_ELEMENT_ACCESS_OPERATOR
sum += abs(array[i][j] * array[i][j]);
#else
sum += abs(array(i,j) * array(i,j));
#endif
}
}
return sum;
}
template <class TArray3D>
real_type squareAbsAccumulate(const TArray3D & array, const size_t size1,
const size_t size2, const size_t size3,
const real_type init)
{
int size1_signed = static_cast<int>(size1);
int size2_signed = static_cast<int>(size2);
int size3_signed = static_cast<int>(size3);
real_type sum = init;
using std::abs;
#ifndef __clang__
#ifdef __USE_OPENMP
#pragma omp parallel for reduction(+:sum)
#endif
#endif
for(int i = 0; i < size1_signed; ++i) {
for(int j = 0; j < size2_signed; ++j) {
for(int k = 0; k < size3_signed; ++k) {
#ifdef __USE_SQUARE_BRACKETS_FOR_ELEMENT_ACCESS_OPERATOR
sum += abs(array[i][j][k] * array[i][j][k]);
#else
sum += abs(array(i,j,k) * array(i,j,k));
#endif
}
}
}
return sum;
}
// Generic template for CCheckFFT struct followed by its explicit specializations
// for certain numbers of dimensions. TArray can be either of real or complex type.
// The technique is similar to the one applied for CFFT struct.
template <class TArray, class TComplexArray, int NumDims>
struct CCheckFFT
{};
template <class TArray1D, class TComplexArray1D>
struct CCheckFFT<TArray1D,TComplexArray1D,1>
{
static bool check_fft(const TArray1D & data_before,
const TComplexArray1D & data_after,
const size_t size, const real_type relative_tolerance,
real_type & discrepancy, const CheckMode check_mode,
const char *& error_description)
{
using namespace error_handling;
if(0 == size) {
GetErrorDescription(EC_NUM_OF_ELEMS_IS_ZERO, error_description);
return false;
}
if ( (CHECK_FFT_PARSEVAL != check_mode) &&
(CHECK_FFT_ENERGY != check_mode) &&
(CHECK_FFT_EQUALITY != check_mode) )
{
GetErrorDescription(EC_WRONG_CHECK_FFT_MODE, error_description);
return false;
}
if (CHECK_FFT_EQUALITY != check_mode)
{
real_type sum_before = squareAbsAccumulate<TArray1D>(data_before, size, 0.0);
real_type sum_after = squareAbsAccumulate<TComplexArray1D>(data_after, size, 0.0);
if (CHECK_FFT_PARSEVAL == check_mode) {
sum_after /= size;
}
using std::abs;
discrepancy = abs(sum_before - sum_after);
if (discrepancy / ((sum_before < 1e-20) ? (sum_before + 1e-20) : sum_before) > relative_tolerance) {
GetErrorDescription(EC_RELATIVE_ERROR_TOO_LARGE, error_description);
return false;
}
else {
return true;
}
}
else {
real_type relative_error;
getMaxAbsoluteAndRelativeErrorNorms(data_before, data_after, size,
discrepancy, relative_error);
if (relative_error < relative_tolerance) {
return true;
}
else {
GetErrorDescription(EC_RELATIVE_ERROR_TOO_LARGE, error_description);
return false;
}
}
}
};
template <class TArray2D, class TComplexArray2D>
struct CCheckFFT<TArray2D,TComplexArray2D,2>
{
static bool check_fft(const TArray2D & data_before,
const TComplexArray2D & data_after,
const size_t size1, const size_t size2,
const real_type relative_tolerance, real_type & discrepancy,
const CheckMode check_mode, const char *& error_description)
{
using namespace error_handling;
if( (0 == size1) || (0 == size2) ) {
GetErrorDescription(EC_NUM_OF_ELEMS_IS_ZERO, error_description);
return false;
}
if ( (CHECK_FFT_PARSEVAL != check_mode) &&
(CHECK_FFT_ENERGY != check_mode) &&
(CHECK_FFT_EQUALITY != check_mode) )
{
GetErrorDescription(EC_WRONG_CHECK_FFT_MODE, error_description);
return false;
}
if (CHECK_FFT_EQUALITY != check_mode)
{
real_type sum_before = squareAbsAccumulate<TArray2D>(data_before, size1, size2, 0.0);
real_type sum_after = squareAbsAccumulate<TComplexArray2D>(data_after, size1, size2, 0.0);
if (CHECK_FFT_PARSEVAL == check_mode) {
sum_after /= size1 * size2;
}
using std::abs;
discrepancy = abs(sum_before - sum_after);
if (discrepancy / ((sum_before < 1e-20) ? (sum_before + 1e-20) : sum_before) > relative_tolerance) {
GetErrorDescription(EC_RELATIVE_ERROR_TOO_LARGE, error_description);
return false;
}
else {
return true;
}
}
else {
real_type relative_error;
getMaxAbsoluteAndRelativeErrorNorms(data_before, data_after, size1,
size2, discrepancy, relative_error);
if (relative_error < relative_tolerance) {
return true;
}
else {
GetErrorDescription(EC_RELATIVE_ERROR_TOO_LARGE, error_description);
return false;
}
}
}
};
template <class TArray3D, class TComplexArray3D>
struct CCheckFFT<TArray3D,TComplexArray3D,3>
{
static bool check_fft(const TArray3D & data_before,
const TComplexArray3D & data_after,
const size_t size1, const size_t size2, const size_t size3,
const real_type relative_tolerance, real_type & discrepancy,
const CheckMode check_mode, const char *& error_description)
{
using namespace error_handling;
if( (0 == size1) || (0 == size2) || (0 == size3) ) {
GetErrorDescription(EC_NUM_OF_ELEMS_IS_ZERO, error_description);
return false;
}
if ( (CHECK_FFT_PARSEVAL != check_mode) &&
(CHECK_FFT_ENERGY != check_mode) &&
(CHECK_FFT_EQUALITY != check_mode) )
{
GetErrorDescription(EC_WRONG_CHECK_FFT_MODE, error_description);
return false;
}
if (CHECK_FFT_EQUALITY != check_mode)
{
real_type sum_before = squareAbsAccumulate<TArray3D>(data_before, size1, size2, size3, 0.0);
real_type sum_after = squareAbsAccumulate<TComplexArray3D>(data_after, size1, size2, size3, 0.0);
if (CHECK_FFT_PARSEVAL == check_mode) {
sum_after /= size1 * size2 * size3;
}
using std::abs;
discrepancy = abs(sum_before - sum_after);
if (discrepancy / ((sum_before < 1e-20) ? (sum_before + 1e-20) : sum_before) > relative_tolerance) {
GetErrorDescription(EC_RELATIVE_ERROR_TOO_LARGE, error_description);
return false;
}
else {
return true;
}
}
else {
real_type relative_error;
getMaxAbsoluteAndRelativeErrorNorms(data_before, data_after, size1,
size2, size3, discrepancy, relative_error);
if (relative_error < relative_tolerance) {
return true;
}
else {
GetErrorDescription(EC_RELATIVE_ERROR_TOO_LARGE, error_description);
return false;
}
}
}
};
} // namespace check_fft_private
namespace check_fft {
template <class TArray1D, class TComplexArray1D>
bool checkParsevalTheorem(const TArray1D & data_before_FFT,
const TComplexArray1D & data_after_FFT,
const size_t size, const real_type relative_tolerance,
real_type & discrepancy, const char *& error_description)
{
return check_fft_private::CCheckFFT<TArray1D,TComplexArray1D,1>::check_fft(data_before_FFT,
data_after_FFT, size, relative_tolerance,
discrepancy, check_fft_private::CHECK_FFT_PARSEVAL,
error_description);
}
template <class TArray2D, class TComplexArray2D>
bool checkParsevalTheorem(const TArray2D & data_before_FFT,
const TComplexArray2D & data_after_FFT,
const size_t size1, const size_t size2,
const real_type relative_tolerance,
real_type & discrepancy, const char *& error_description)
{
return check_fft_private::CCheckFFT<TArray2D,TComplexArray2D,2>::check_fft(data_before_FFT,
data_after_FFT, size1, size2, relative_tolerance,
discrepancy, check_fft_private::CHECK_FFT_PARSEVAL,
error_description);
}
template <class TArray3D, class TComplexArray3D>
bool checkParsevalTheorem(const TArray3D & data_before_FFT,
const TComplexArray3D & data_after_FFT,
const size_t size1, const size_t size2, const size_t size3,
const real_type relative_tolerance, real_type & discrepancy,
const char *& error_description)
{
return check_fft_private::CCheckFFT<TArray3D,TComplexArray3D,3>::check_fft(data_before_FFT,
data_after_FFT, size1, size2, size3,
relative_tolerance, discrepancy,
check_fft_private::CHECK_FFT_PARSEVAL,
error_description);
}
template <class TArray1D, class TComplexArray1D>
bool checkEnergyConservation(const TArray1D & data_before_FFT,
const TComplexArray1D & data_after_FFT_and_IFFT,
const size_t size, const real_type relative_tolerance,
real_type & discrepancy, const char *& error_description)
{
return check_fft_private::CCheckFFT<TArray1D,TComplexArray1D,1>::check_fft(data_before_FFT,
data_after_FFT_and_IFFT, size, relative_tolerance,
discrepancy, check_fft_private::CHECK_FFT_ENERGY,
error_description);
}
template <class TArray2D, class TComplexArray2D>
bool checkEnergyConservation(const TArray2D & data_before_FFT,
const TComplexArray2D & data_after_FFT_and_IFFT,
const size_t size1, const size_t size2,
const real_type relative_tolerance,
real_type & discrepancy, const char *& error_description)
{
return check_fft_private::CCheckFFT<TArray2D,TComplexArray2D,2>::check_fft(data_before_FFT,
data_after_FFT_and_IFFT, size1, size2,
relative_tolerance, discrepancy,
check_fft_private::CHECK_FFT_ENERGY,
error_description);
}
template <class TArray3D, class TComplexArray3D>
bool checkEnergyConservation(const TArray3D & data_before_FFT,
const TComplexArray3D & data_after_FFT_and_IFFT,
const size_t size1, const size_t size2, const size_t size3,
const real_type relative_tolerance, real_type & discrepancy,
const char *& error_description)
{
return check_fft_private::CCheckFFT<TArray3D,TComplexArray3D,3>::check_fft(data_before_FFT,
data_after_FFT_and_IFFT, size1, size2,
size3, relative_tolerance, discrepancy,
check_fft_private::CHECK_FFT_ENERGY,
error_description);
}
template <class TArray1D, class TComplexArray1D>
bool checkEquality(const TArray1D & data_before_FFT,
const TComplexArray1D & data_after_FFT_and_IFFT,
const size_t size, const real_type relative_tolerance,
real_type & discrepancy, const char *& error_description)
{
return check_fft_private::CCheckFFT<TArray1D,TComplexArray1D,1>::check_fft(data_before_FFT,
data_after_FFT_and_IFFT, size, relative_tolerance,
discrepancy, check_fft_private::CHECK_FFT_EQUALITY,
error_description);
}
template <class TArray2D, class TComplexArray2D>
bool checkEquality(const TArray2D & data_before_FFT,
const TComplexArray2D & data_after_FFT_and_IFFT, const size_t size1,
const size_t size2, const real_type relative_tolerance,
real_type & discrepancy, const char *& error_description)
{
return check_fft_private::CCheckFFT<TArray2D,TComplexArray2D,2>::check_fft(data_before_FFT,
data_after_FFT_and_IFFT, size1, size2,
relative_tolerance, discrepancy,
check_fft_private::CHECK_FFT_EQUALITY,
error_description);
}
template <class TArray3D, class TComplexArray3D>
bool checkEquality(const TArray3D & data_before_FFT,
const TComplexArray3D & data_after_FFT_and_IFFT, const size_t size1,
const size_t size2, const size_t size3, const real_type relative_tolerance,
real_type & discrepancy, const char *& error_description)
{
return check_fft_private::CCheckFFT<TArray3D,TComplexArray3D,3>::check_fft(data_before_FFT,
data_after_FFT_and_IFFT, size1, size2,
size3, relative_tolerance, discrepancy,
check_fft_private::CHECK_FFT_EQUALITY,
error_description);
}
} // namespace check_fft
} // namespace simple_fft
#endif // __SIMPLE_FFT__CHECK_FFT_HPP__