- worked on about everything - grid walker using plugable modules - wifi models - new distributions - worked on geometric data-structures - added typesafe timestamps - worked on grid-building - added sensor-classes - added sensor analysis (step-detection, turn-detection) - offline data reader - many test-cases
494 lines
12 KiB
C++
494 lines
12 KiB
C++
#ifndef TURNDETECTION_H
|
|
#define TURNDETECTION_H
|
|
|
|
#include "GyroscopeData.h"
|
|
#include "AccelerometerData.h"
|
|
#include "../../data/Timestamp.h"
|
|
|
|
#include <eigen3/Eigen/Dense>
|
|
|
|
#include <cmath>
|
|
#include <vector>
|
|
|
|
#include <KLib/misc/gnuplot/Gnuplot.h>
|
|
#include <KLib/misc/gnuplot/GnuplotSplot.h>
|
|
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
|
|
#include <KLib/misc/gnuplot/GnuplotPlot.h>
|
|
#include <KLib/misc/gnuplot/GnuplotPlotElementLines.h>
|
|
|
|
|
|
#include "../../Assertions.h"
|
|
|
|
class TurnDetection {
|
|
|
|
private:
|
|
|
|
//std::vector<AccelerometerData> accData;
|
|
std::vector<GyroscopeData> gyroData;
|
|
|
|
Timestamp lastGyro;
|
|
Timestamp lastRotMatEst;
|
|
|
|
Eigen::Matrix3f rotMat;
|
|
Eigen::Vector3f avgAcc;
|
|
|
|
Eigen::Vector3f leGyro;
|
|
|
|
public:
|
|
|
|
/** ctor */
|
|
TurnDetection() : rotMat(Eigen::Matrix3f::Identity()) {
|
|
|
|
}
|
|
|
|
float addGyroscope(const Timestamp& ts, const GyroscopeData& gyro) {
|
|
|
|
if (lastGyro.isZero()) {lastGyro = ts;}
|
|
|
|
|
|
// TESTING!
|
|
gyroData.push_back(gyro);
|
|
static Eigen::Matrix3f rotMat = Eigen::Matrix3f::Identity();
|
|
if (gyroData.size() > 25) {
|
|
Eigen::Vector3f sum = Eigen::Vector3f::Zero();
|
|
int cnt = 0;
|
|
for (GyroscopeData gd : gyroData) {
|
|
//if (gd.z > gd.x && gd.z > gd.y) {
|
|
Eigen::Vector3f vec; vec << (gd.x), (gd.y), (gd.z);
|
|
sum += vec;
|
|
++cnt;
|
|
//}
|
|
}
|
|
gyroData.clear();
|
|
if (cnt > 10) {
|
|
Eigen::Vector3f z; z << 0,0, sum(2) < 0 ? -1 : +1;
|
|
rotMat = getRotationMatrix(sum.normalized(), z.normalized());
|
|
}
|
|
}
|
|
|
|
// current gyro-reading as vector
|
|
Eigen::Vector3f vec; vec << gyro.x, gyro.y, gyro.z;
|
|
leGyro = vec;
|
|
|
|
// current value, rotated into the new coordinate system
|
|
Eigen::Vector3f curVec = rotMat * vec;
|
|
|
|
// previous value
|
|
static Eigen::Vector3f oldVec = curVec;
|
|
|
|
// time-difference between previous and current value
|
|
const Timestamp diff = ts - lastGyro;
|
|
lastGyro = ts;
|
|
|
|
// area
|
|
Eigen::Vector3f area = Eigen::Vector3f::Zero();
|
|
if (!diff.isZero()) {
|
|
area = (oldVec * diff.sec()) + // squared region
|
|
((curVec - oldVec) * 0.5 * diff.sec()); // triangle region to the next (enhances the quality)
|
|
}
|
|
|
|
// update the old value
|
|
oldVec = curVec;
|
|
|
|
const float delta = area(2);// * 0.8;
|
|
|
|
|
|
|
|
|
|
static int i = 0; ++i;
|
|
if (i % 50 == 0) {
|
|
|
|
static K::Gnuplot gp;
|
|
|
|
gp << "set view equal xyz\n";
|
|
gp << "set xrange[-1:+1]\n";
|
|
gp << "set yrange[-1:+1]\n";
|
|
gp << "set zrange[-1:+1]\n";
|
|
|
|
K::GnuplotSplot plot;
|
|
K::GnuplotSplotElementLines lines; plot.add(&lines);
|
|
|
|
K::GnuplotPoint3 p0(0,0,0);
|
|
//K::GnuplotPoint3 pO(vec(0), vec(1), vec(2));
|
|
|
|
K::GnuplotPoint3 px(rotMat(0,0), rotMat(1,0), rotMat(2,0)); //px = px * eval(0);
|
|
K::GnuplotPoint3 py(rotMat(0,1), rotMat(1,1), rotMat(2,1)); //py = py * eval(1);
|
|
K::GnuplotPoint3 pz(rotMat(0,2), rotMat(1,2), rotMat(2,2)); //pz = pz * eval(2);
|
|
|
|
lines.addSegment(p0, px*0.15);
|
|
lines.addSegment(p0, py*0.4);
|
|
lines.addSegment(p0, pz*1.0);
|
|
|
|
Eigen::Vector3f ori = leGyro;
|
|
Eigen::Vector3f re = rotMat * leGyro;
|
|
Eigen::Vector3f avg = est.lastAvg * 0.3;
|
|
|
|
gp << "set arrow 1 from 0,0,0 to " << avg(0) << "," << avg(1) << "," << avg(2) << " lw 2\n";
|
|
|
|
gp << "set arrow 2 from 0,0,0 to " << ori(0) << "," << ori(1) << "," << ori(2) << " lw 1 dashtype 2 \n";
|
|
gp << "set arrow 3 from 0,0,0 to " << re(0) << "," << re(1) << "," << re(2) << " lw 1\n";
|
|
|
|
// gp << "set arrow 2 from 0,0,0 to " << vec(0) << "," << vec(1) << "," << vec(2) << "\n";
|
|
// gp << "set arrow 3 from 0,0,0 to " << nVec(0) << "," << nVec(1) << "," << nVec(2) << "\n";
|
|
|
|
gp.draw(plot);
|
|
//gp.flush();
|
|
|
|
}
|
|
|
|
|
|
|
|
static Eigen::Vector3f sum = Eigen::Vector3f::Zero();
|
|
sum += area;
|
|
|
|
if (i % 30 == 0) {
|
|
|
|
static int idx = 0;
|
|
static K::Gnuplot gp2;
|
|
gp2 << "set arrow 1 from 0,0 to 10000,0\n";
|
|
gp2 << "set arrow 2 from 0,5 to 10000,5\n";
|
|
gp2 << "set arrow 3 from 0,10 to 10000,10\n";
|
|
|
|
K::GnuplotPlot plot2;
|
|
static K::GnuplotPlotElementLines linesX; plot2.add(&linesX);
|
|
static K::GnuplotPlotElementLines linesY; plot2.add(&linesY);
|
|
static K::GnuplotPlotElementLines linesZ; plot2.add(&linesZ);
|
|
|
|
//linesX.add(K::GnuplotPoint2(idx, sum(0) + 0));
|
|
//linesY.add(K::GnuplotPoint2(idx, sum(1) + 5));
|
|
linesZ.add(K::GnuplotPoint2(idx, sum(2) + 10));
|
|
++idx;
|
|
|
|
gp2.draw(plot2);
|
|
//gp2.flush();
|
|
|
|
}
|
|
|
|
return delta;
|
|
|
|
}
|
|
|
|
|
|
|
|
void addAccelerometer(const Timestamp& ts, const AccelerometerData& acc) {
|
|
|
|
// add accelerometer data
|
|
//pca.add(std::abs(acc.x), std::abs(acc.y), std::abs(acc.z));
|
|
est.add((acc.x), (acc.y), (acc.z));
|
|
|
|
// start with the first available timestamp
|
|
if (lastRotMatEst.isZero()) {lastRotMatEst = ts;}
|
|
|
|
// if we have at-least 1 sec of acc-data, re-calculate the current smartphone holding
|
|
if (ts - lastRotMatEst > Timestamp::fromMS(500)) {
|
|
rotMat = est.get();
|
|
lastRotMatEst = ts;
|
|
}
|
|
|
|
}
|
|
|
|
private:
|
|
|
|
// /** estimate the smartphones current holding position */
|
|
// void estimateHolding2() {
|
|
|
|
|
|
// // z-axis points through the device and is the axis we are interested in
|
|
// // http://www.kircherelectronics.com/blog/index.php/11-android/sensors/15-android-gyroscope-basics
|
|
|
|
// avgAcc = Eigen::Vector3f::Zero();
|
|
|
|
// for (const AccelerometerData& acc : accData) {
|
|
// //for (const GyroscopeData& acc : gyroData) {
|
|
// Eigen::Vector3f vec; vec << std::abs(acc.x), std::abs(acc.y), std::abs(acc.z);
|
|
// // Eigen::Vector3f vec; vec << std::abs(acc.x), std::abs(acc.y), std::abs(acc.z);
|
|
// avgAcc += vec;
|
|
// }
|
|
|
|
// //avgAcc /= accData.size();
|
|
// avgAcc = avgAcc.normalized();
|
|
|
|
// Eigen::Vector3f rev; rev << 0,0,1;
|
|
|
|
// rotMat = getRotationMatrix(avgAcc, rev);
|
|
|
|
|
|
// //Assert::isTrue(avgAcc(2) > avgAcc(0), "z is not the gravity axis");
|
|
// //Assert::isTrue(avgAcc(2) > avgAcc(1), "z is not the gravity axis");
|
|
//// Eigen::Vector3f re = rotMat * avgAcc;
|
|
//// Eigen::Vector3f diff = rev-re;
|
|
//// Assert::isTrue(diff.norm() < 0.001, "rotation error");
|
|
|
|
// }
|
|
|
|
public:
|
|
|
|
/** get a matrix that rotates the vector "from" into the vector "to" */
|
|
static Eigen::Matrix3f getRotationMatrix(const Eigen::Vector3f& from, const Eigen::Vector3f to) {
|
|
|
|
// http://math.stackexchange.com/questions/293116/rotating-one-3d-vector-to-another
|
|
|
|
const Eigen::Vector3f x = from.cross(to) / from.cross(to).norm();
|
|
const float angle = std::acos( from.dot(to) / from.norm() / to.norm() );
|
|
|
|
Eigen::Matrix3f A; A <<
|
|
0, -x(2), x(1),
|
|
x(2), 0, -x(0),
|
|
-x(1), x(0), 0;
|
|
|
|
return Eigen::Matrix3f::Identity() + (std::sin(angle) * A) + ((1-std::cos(angle)) * (A*A));
|
|
|
|
}
|
|
|
|
|
|
struct XYZ {
|
|
|
|
Eigen::Vector3f lastAvg;
|
|
Eigen::Vector3f avg;
|
|
int cnt;
|
|
|
|
XYZ() {
|
|
reset();
|
|
}
|
|
|
|
void add(const float x, const float y, const float z) {
|
|
|
|
Eigen::Vector3f vec; vec << x,y,z;
|
|
avg += vec;
|
|
++cnt;
|
|
|
|
}
|
|
|
|
Eigen::Matrix3f get() {
|
|
|
|
avg/= cnt;
|
|
lastAvg = avg;
|
|
|
|
// rotate average accelerometer into (0,0,1)
|
|
Eigen::Vector3f zAxis; zAxis << 0, 0, 1;
|
|
const Eigen::Matrix3f rotMat = getRotationMatrix(avg.normalized(), zAxis);
|
|
|
|
// sanity check
|
|
Eigen::Vector3f aligned = (rotMat * avg).normalized();
|
|
Assert::isTrue((aligned-zAxis).norm() < 0.1f, "deviation too high");
|
|
|
|
reset();
|
|
|
|
return rotMat;
|
|
|
|
}
|
|
|
|
void reset() {
|
|
cnt = 0;
|
|
avg = Eigen::Vector3f::Zero();
|
|
}
|
|
|
|
|
|
} est;
|
|
|
|
|
|
// struct RotationMatrixEstimationUsingAccAngle {
|
|
|
|
// Eigen::Vector3f lastAvg;
|
|
// Eigen::Vector3f avg;
|
|
// int cnt;
|
|
|
|
// RotationMatrixEstimationUsingAccAngle() {
|
|
// reset();
|
|
// }
|
|
|
|
// void add(const float x, const float y, const float z) {
|
|
|
|
// Eigen::Vector3f vec; vec << x,y,z;
|
|
// avg += vec;
|
|
// ++cnt;
|
|
|
|
// }
|
|
|
|
// void reset() {
|
|
// cnt = 0;
|
|
// avg = Eigen::Vector3f::Zero();
|
|
// }
|
|
|
|
// Eigen::Matrix3f get() {
|
|
|
|
// // http://www.hobbytronics.co.uk/accelerometer-info
|
|
|
|
// avg /= cnt;
|
|
// lastAvg = avg;
|
|
|
|
// //const float mag = avg.norm();
|
|
|
|
// const float baseX = 0;
|
|
// const float baseY = 0;
|
|
// const float baseZ = 0; // mag?
|
|
|
|
// const float x = avg(0) - baseX;
|
|
// const float y = avg(1) - baseY;
|
|
// const float z = avg(2) - baseZ;
|
|
|
|
// const float ax = std::atan( x / (std::sqrt(y*y + z*z)) );
|
|
// const float ay = std::atan( y / (std::sqrt(x*x + z*z)) );
|
|
|
|
// const Eigen::Matrix3f rotMat = getRotation(ay, -ax, 0); // TODO -ax or +ax?
|
|
|
|
// // sanity check
|
|
// Eigen::Vector3f zAxis; zAxis << 0, 0, 1;
|
|
// Eigen::Vector3f aligned = (rotMat * avg).normalized();
|
|
// Assert::isTrue((aligned-zAxis).norm() < 0.1f, "deviation too high");
|
|
// // int i = 0; (void) i;
|
|
|
|
// reset();
|
|
// return rotMat;
|
|
|
|
// }
|
|
|
|
// } est;
|
|
|
|
|
|
/** get a rotation matrix for the given x,y,z rotation (in radians) */
|
|
static Eigen::Matrix3f getRotation(const float x, const float y, const float z) {
|
|
const float g = x; const float b = y; const float a = z;
|
|
const float a11 = std::cos(a)*std::cos(b);
|
|
const float a12 = std::cos(a)*std::sin(b)*std::sin(g)-std::sin(a)*std::cos(g);
|
|
const float a13 = std::cos(a)*std::sin(b)*std::cos(g)+std::sin(a)*std::sin(g);
|
|
const float a21 = std::sin(a)*std::cos(b);
|
|
const float a22 = std::sin(a)*std::sin(b)*std::sin(g)+std::cos(a)*std::cos(g);
|
|
const float a23 = std::sin(a)*std::sin(b)*std::cos(g)-std::cos(a)*std::sin(g);
|
|
const float a31 = -std::sin(b);
|
|
const float a32 = std::cos(b)*std::sin(g);
|
|
const float a33 = std::cos(b)*std::cos(g);
|
|
Eigen::Matrix3f m;
|
|
m <<
|
|
a11, a12, a13,
|
|
a21, a22, a23,
|
|
a31, a32, a33;
|
|
;
|
|
return m;
|
|
}
|
|
|
|
|
|
// struct PCA {
|
|
|
|
// Eigen::Vector3f avg;
|
|
// Eigen::Vector3f lastAvg;
|
|
// Eigen::Matrix3f covar;
|
|
// int cnt = 0;
|
|
|
|
// PCA() {
|
|
// reset();
|
|
// }
|
|
|
|
// void add(const float x, const float y, const float z) {
|
|
|
|
// Eigen::Vector3f vec; vec << x,y,z;
|
|
// avg += vec;
|
|
// covar += vec*vec.transpose();
|
|
// ++cnt;
|
|
|
|
// }
|
|
|
|
// Eigen::Matrix3f get() {
|
|
|
|
// avg /= cnt;
|
|
// covar /= cnt;
|
|
// lastAvg = avg;
|
|
|
|
// std::cout << avg << std::endl;
|
|
|
|
// Eigen::Matrix3f Q = covar;// - avg*avg.transpose();
|
|
// for (int i = 0; i < 9; ++i) {Q(i) = std::abs(Q(i));}
|
|
|
|
// Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> solver(Q);
|
|
// solver.eigenvalues();
|
|
// solver.eigenvectors();
|
|
|
|
// const auto eval = solver.eigenvalues();
|
|
// const auto evec = solver.eigenvectors();
|
|
// Assert::isTrue(eval(2) > eval(1) && eval(1) > eval(0), "eigenvalues are not sorted!");
|
|
|
|
// Eigen::Matrix3f rotMat;
|
|
// rotMat.col(0) = evec.col(0);
|
|
// rotMat.col(1) = evec.col(1);
|
|
// rotMat.col(2) = evec.col(2); // 0,0,1 (z-axis) belongs to the strongest eigenvalue
|
|
// rotMat.transposeInPlace();
|
|
|
|
// //Eigen::Vector3f gy; gy << 0, 30, 30;
|
|
// Eigen::Vector3f avg1 = rotMat * avg;
|
|
// int i = 0; (void) i;
|
|
|
|
// reset();
|
|
|
|
// return rotMat;
|
|
|
|
// }
|
|
|
|
// void reset() {
|
|
// cnt = 0;
|
|
// avg = Eigen::Vector3f::Zero();
|
|
// covar = Eigen::Matrix3f::Zero();
|
|
// }
|
|
|
|
|
|
// } pca1;
|
|
|
|
|
|
|
|
|
|
// /** estimate the smartphones current holding position */
|
|
// void estimateHolding() {
|
|
|
|
// Eigen::Vector3f avg = Eigen::Vector3f::Zero();
|
|
// Eigen::Matrix3f covar = Eigen::Matrix3f::Zero();
|
|
|
|
// for (const AccelerometerData& acc : accData) {
|
|
//// for (const GyroscopeData& acc : gyroData) {
|
|
// Eigen::Vector3f vec; vec << std::abs(acc.x), std::abs(acc.y), std::abs(acc.z);
|
|
//// Eigen::Vector3f vec; vec << (acc.x), (acc.y), (acc.z);
|
|
// avg += vec;
|
|
// covar += vec * vec.transpose();
|
|
// }
|
|
|
|
// avg /= accData.size(); // TODO
|
|
// covar /= accData.size(); //TODO
|
|
|
|
// avgAcc = avg.normalized();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//// static K::Gnuplot gp;
|
|
//// gp << "set view equal xyz\n";
|
|
//// gp << "set xrange[-1:+1]\n";
|
|
//// gp << "set yrange[-1:+1]\n";
|
|
//// gp << "set zrange[-1:+1]\n";
|
|
|
|
//// K::GnuplotSplot plot;
|
|
//// K::GnuplotSplotElementLines lines; plot.add(&lines);
|
|
|
|
//// K::GnuplotPoint3 p0(0,0,0);
|
|
//// K::GnuplotPoint3 px(evec(0,0), evec(1,0), evec(2,0)); //px = px * eval(0);
|
|
//// K::GnuplotPoint3 py(evec(0,1), evec(1,1), evec(2,1)); //py = py * eval(1);
|
|
//// K::GnuplotPoint3 pz(evec(0,2), evec(1,2), evec(2,2)); //pz = pz * eval(2);
|
|
|
|
//// K::GnuplotPoint3 pa(avg(0), avg(1), avg(2));
|
|
|
|
//// lines.addSegment(p0, px);
|
|
//// lines.addSegment(p0, py);
|
|
//// lines.addSegment(p0, pz);
|
|
//// lines.addSegment(p0, pa);
|
|
|
|
//// gp.draw(plot);
|
|
//// gp.flush();
|
|
|
|
// }
|
|
|
|
};
|
|
|
|
#endif // TURNDETECTION_H
|