This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
Indoor/sensors/imu/TurnDetection.h
FrankE d283d9b326 geometry changes/fixes/new features
new grid walkers + fixes
new test-cases
worked on step/and turn detection
android offline-data-reader
worked on vap-grouping
2016-09-07 10:16:51 +02:00

455 lines
11 KiB
C++

#ifndef TURNDETECTION_H
#define TURNDETECTION_H
#include "GyroscopeData.h"
#include "AccelerometerData.h"
#include "../../data/Timestamp.h"
#include "../../math/MovingAverageTS.h"
#include <eigen3/Eigen/Dense>
#include <cmath>
#include <vector>
#include <KLib/misc/gnuplot/Gnuplot.h>
#include <KLib/misc/gnuplot/GnuplotSplot.h>
#include <KLib/misc/gnuplot/GnuplotSplotElementLines.h>
#include <KLib/misc/gnuplot/GnuplotPlot.h>
#include <KLib/misc/gnuplot/GnuplotPlotElementLines.h>
#include "../../Assertions.h"
class TurnDetection {
private:
//std::vector<GyroscopeData> gyroData;
Eigen::Vector3f prevGyro = Eigen::Vector3f::Zero();
Timestamp lastGyroReading;
struct {
Eigen::Matrix3f rotationMatrix = Eigen::Matrix3f::Identity();
bool isKnown = false;
Timestamp lastEstimation;
} orientation;
public:
/** ctor */
TurnDetection() {
;
}
// does not seem to help...
// struct DriftEstimator {
// MovingAverageTS<Eigen::Vector3f> avg;
// DriftEstimator() : avg(Timestamp::fromSec(5.0), Eigen::Vector3f::Zero()) {
// ;
// }
// void removeDrift(const Timestamp ts, Eigen::Vector3f& gyro) {
// if (gyro.norm() < 0.15) {
// avg.add(ts, gyro);
// gyro -= avg.get();
// }
// }
// } driftEst;
float addGyroscope(const Timestamp& ts, const GyroscopeData& gyro) {
// ignore the first reading completely, just remember its timestamp
if (lastGyroReading.isZero()) {lastGyroReading = ts; return 0.0f;}
// time-difference between previous and current reading
const Timestamp curDiff = ts - lastGyroReading;
lastGyroReading = ts;
// fast sensors might lead to delay = 0 ms. filter those values
if (curDiff.isZero()) {return 0.0f;}
// ignore readings until the first orientation-estimation is available
// otherwise we would use a wrong rotation matrix which yields wrong results!
if (!orientation.isKnown) {return 0.0f;}
// get the current gyro-reading as vector
Eigen::Vector3f vec; vec << gyro.x, gyro.y, gyro.z;
// rotate it into our desired coordinate system, where the smartphone lies flat on the ground
Eigen::Vector3f curGyro = orientation.rotationMatrix * vec;
//driftEst.removeDrift(ts, curGyro);
// area
const Eigen::Vector3f area =
// Trapezoid rule (should be more accurate but does not always help?!)
//(prevGyro * curDiff.sec()) + // squared region
//((curGyro - prevGyro) * 0.5 * curDiff.sec()); // triangle region to the next (enhances the quality)
// just the rectangular region
(prevGyro * curDiff.sec()); // BEST?!
//}
// update the old value
prevGyro = curGyro;
// rotation = z-axis only!
const float delta = area(2);
// done
return delta;
}
void addAccelerometer(const Timestamp& ts, const AccelerometerData& acc) {
// add accelerometer data
//pca.add(std::abs(acc.x), std::abs(acc.y), std::abs(acc.z));
est.addAcc(acc);
// start with the first available timestamp
if (orientation.lastEstimation.isZero()) {orientation.lastEstimation = ts;}
// if we have at-least 500 ms of acc-data, re-calculate the current smartphone holding
if (ts - orientation.lastEstimation > Timestamp::fromMS(1500)) {
orientation.rotationMatrix = est.get();
orientation.isKnown = true;
orientation.lastEstimation = ts;
est.reset();
}
}
private:
// /** estimate the smartphones current holding position */
// void estimateHolding2() {
// // z-axis points through the device and is the axis we are interested in
// // http://www.kircherelectronics.com/blog/index.php/11-android/sensors/15-android-gyroscope-basics
// avgAcc = Eigen::Vector3f::Zero();
// for (const AccelerometerData& acc : accData) {
// //for (const GyroscopeData& acc : gyroData) {
// Eigen::Vector3f vec; vec << std::abs(acc.x), std::abs(acc.y), std::abs(acc.z);
// // Eigen::Vector3f vec; vec << std::abs(acc.x), std::abs(acc.y), std::abs(acc.z);
// avgAcc += vec;
// }
// //avgAcc /= accData.size();
// avgAcc = avgAcc.normalized();
// Eigen::Vector3f rev; rev << 0,0,1;
// rotMat = getRotationMatrix(avgAcc, rev);
// //Assert::isTrue(avgAcc(2) > avgAcc(0), "z is not the gravity axis");
// //Assert::isTrue(avgAcc(2) > avgAcc(1), "z is not the gravity axis");
//// Eigen::Vector3f re = rotMat * avgAcc;
//// Eigen::Vector3f diff = rev-re;
//// Assert::isTrue(diff.norm() < 0.001, "rotation error");
// }
public:
/** get a matrix that rotates the vector "from" into the vector "to" */
static Eigen::Matrix3f getRotationMatrix(const Eigen::Vector3f& from, const Eigen::Vector3f to) {
// http://math.stackexchange.com/questions/293116/rotating-one-3d-vector-to-another
const Eigen::Vector3f x = from.cross(to) / from.cross(to).norm();
const float angle = std::acos( from.dot(to) / from.norm() / to.norm() );
Eigen::Matrix3f A; A <<
0, -x(2), x(1),
x(2), 0, -x(0),
-x(1), x(0), 0;
return Eigen::Matrix3f::Identity() + (std::sin(angle) * A) + ((1-std::cos(angle)) * (A*A));
}
struct XYZ {
Eigen::Vector3f sum;
int cnt;
XYZ() {
reset();
}
/** add the given accelerometer reading */
void addAcc(const AccelerometerData& acc) {
// did NOT improve the result for every smartphone (only some)
//const float deltaMag = std::abs(acc.magnitude() - 9.81);
//if (deltaMag > 5.0) {return;}
// adjust sum and count (for average calculation)
Eigen::Vector3f vec; vec << acc.x, acc.y, acc.z;
sum += vec;
++cnt;
}
/** get the current rotation matrix estimation */
Eigen::Matrix3f get() const {
// get the current acceleromter average
const Eigen::Vector3f avg = sum / cnt;
// rotate average accelerometer into (0,0,1)
Eigen::Vector3f zAxis; zAxis << 0, 0, 1;
const Eigen::Matrix3f rotMat = getRotationMatrix(avg.normalized(), zAxis);
// just a small sanity check. after applying to rotation the acc-average should become (0,0,1)
Eigen::Vector3f aligned = (rotMat * avg).normalized();
Assert::isTrue((aligned-zAxis).norm() < 0.1f, "deviation too high");
return rotMat;
}
/** reset the current sum etc. */
void reset() {
cnt = 0;
sum = Eigen::Vector3f::Zero();
}
} est;
// struct RotationMatrixEstimationUsingAccAngle {
// Eigen::Vector3f lastAvg;
// Eigen::Vector3f avg;
// int cnt;
// RotationMatrixEstimationUsingAccAngle() {
// reset();
// }
// void add(const float x, const float y, const float z) {
// Eigen::Vector3f vec; vec << x,y,z;
// avg += vec;
// ++cnt;
// }
// void reset() {
// cnt = 0;
// avg = Eigen::Vector3f::Zero();
// }
// Eigen::Matrix3f get() {
// // http://www.hobbytronics.co.uk/accelerometer-info
// avg /= cnt;
// lastAvg = avg;
// //const float mag = avg.norm();
// const float baseX = 0;
// const float baseY = 0;
// const float baseZ = 0; // mag?
// const float x = avg(0) - baseX;
// const float y = avg(1) - baseY;
// const float z = avg(2) - baseZ;
// const float ax = std::atan( x / (std::sqrt(y*y + z*z)) );
// const float ay = std::atan( y / (std::sqrt(x*x + z*z)) );
// const Eigen::Matrix3f rotMat = getRotation(ay, -ax, 0); // TODO -ax or +ax?
// // sanity check
// Eigen::Vector3f zAxis; zAxis << 0, 0, 1;
// Eigen::Vector3f aligned = (rotMat * avg).normalized();
// Assert::isTrue((aligned-zAxis).norm() < 0.1f, "deviation too high");
// // int i = 0; (void) i;
// reset();
// return rotMat;
// }
// } est;
/** get a rotation matrix for the given x,y,z rotation (in radians) */
static Eigen::Matrix3f getRotation(const float x, const float y, const float z) {
const float g = x; const float b = y; const float a = z;
const float a11 = std::cos(a)*std::cos(b);
const float a12 = std::cos(a)*std::sin(b)*std::sin(g)-std::sin(a)*std::cos(g);
const float a13 = std::cos(a)*std::sin(b)*std::cos(g)+std::sin(a)*std::sin(g);
const float a21 = std::sin(a)*std::cos(b);
const float a22 = std::sin(a)*std::sin(b)*std::sin(g)+std::cos(a)*std::cos(g);
const float a23 = std::sin(a)*std::sin(b)*std::cos(g)-std::cos(a)*std::sin(g);
const float a31 = -std::sin(b);
const float a32 = std::cos(b)*std::sin(g);
const float a33 = std::cos(b)*std::cos(g);
Eigen::Matrix3f m;
m <<
a11, a12, a13,
a21, a22, a23,
a31, a32, a33;
;
return m;
}
// struct PCA {
// Eigen::Vector3f avg;
// Eigen::Vector3f lastAvg;
// Eigen::Matrix3f covar;
// int cnt = 0;
// PCA() {
// reset();
// }
// void add(const float x, const float y, const float z) {
// Eigen::Vector3f vec; vec << x,y,z;
// avg += vec;
// covar += vec*vec.transpose();
// ++cnt;
// }
// Eigen::Matrix3f get() {
// avg /= cnt;
// covar /= cnt;
// lastAvg = avg;
// std::cout << avg << std::endl;
// Eigen::Matrix3f Q = covar;// - avg*avg.transpose();
// for (int i = 0; i < 9; ++i) {Q(i) = std::abs(Q(i));}
// Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> solver(Q);
// solver.eigenvalues();
// solver.eigenvectors();
// const auto eval = solver.eigenvalues();
// const auto evec = solver.eigenvectors();
// Assert::isTrue(eval(2) > eval(1) && eval(1) > eval(0), "eigenvalues are not sorted!");
// Eigen::Matrix3f rotMat;
// rotMat.col(0) = evec.col(0);
// rotMat.col(1) = evec.col(1);
// rotMat.col(2) = evec.col(2); // 0,0,1 (z-axis) belongs to the strongest eigenvalue
// rotMat.transposeInPlace();
// //Eigen::Vector3f gy; gy << 0, 30, 30;
// Eigen::Vector3f avg1 = rotMat * avg;
// int i = 0; (void) i;
// reset();
// return rotMat;
// }
// void reset() {
// cnt = 0;
// avg = Eigen::Vector3f::Zero();
// covar = Eigen::Matrix3f::Zero();
// }
// } pca1;
// /** estimate the smartphones current holding position */
// void estimateHolding() {
// Eigen::Vector3f avg = Eigen::Vector3f::Zero();
// Eigen::Matrix3f covar = Eigen::Matrix3f::Zero();
// for (const AccelerometerData& acc : accData) {
//// for (const GyroscopeData& acc : gyroData) {
// Eigen::Vector3f vec; vec << std::abs(acc.x), std::abs(acc.y), std::abs(acc.z);
//// Eigen::Vector3f vec; vec << (acc.x), (acc.y), (acc.z);
// avg += vec;
// covar += vec * vec.transpose();
// }
// avg /= accData.size(); // TODO
// covar /= accData.size(); //TODO
// avgAcc = avg.normalized();
//// static K::Gnuplot gp;
//// gp << "set view equal xyz\n";
//// gp << "set xrange[-1:+1]\n";
//// gp << "set yrange[-1:+1]\n";
//// gp << "set zrange[-1:+1]\n";
//// K::GnuplotSplot plot;
//// K::GnuplotSplotElementLines lines; plot.add(&lines);
//// K::GnuplotPoint3 p0(0,0,0);
//// K::GnuplotPoint3 px(evec(0,0), evec(1,0), evec(2,0)); //px = px * eval(0);
//// K::GnuplotPoint3 py(evec(0,1), evec(1,1), evec(2,1)); //py = py * eval(1);
//// K::GnuplotPoint3 pz(evec(0,2), evec(1,2), evec(2,2)); //pz = pz * eval(2);
//// K::GnuplotPoint3 pa(avg(0), avg(1), avg(2));
//// lines.addSegment(p0, px);
//// lines.addSegment(p0, py);
//// lines.addSegment(p0, pz);
//// lines.addSegment(p0, pa);
//// gp.draw(plot);
//// gp.flush();
// }
};
#endif // TURNDETECTION_H