This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
Indoor/sensors/activity/ActivityButterPressurePercent.h
2017-10-24 12:44:16 +02:00

189 lines
6.8 KiB
C++

#ifndef ACTIVITYBUTTERPRESSUREPERCENT_H
#define ACTIVITYBUTTERPRESSUREPERCENT_H
#include "../../data/Timestamp.h"
#include "../../math/filter/Butterworth.h"
#include "../../math/FixedFrequencyInterpolator.h"
#include "../../math/distribution/Normal.h"
#include <KLib/Assertions.h>
#include <vector>
#include "../pressure/BarometerData.h"
#include "Activity.h"
/**
* receives pressure measurements, interpolates them to a ficex frequency, lowpass filtering
* activity recognition based on a small window given by matlabs diff(window)
*
* todo: if an elevator is detected, first we have a short time the stairs are more prober.
*/
class ActivityButterPressurePercent {
public:
struct ActivityProbabilities{
float elevatorDown;
float stairsDown;
float stay;
float stairsUp;
float elevatorUp;
ActivityProbabilities(float elevatorDown, float stairsDown,
float stay, float stairsUp, float elevatorUp) :
elevatorDown(elevatorDown), stairsDown(stairsDown),
stay(stay), stairsUp(stairsUp), elevatorUp(elevatorUp) {;}
ActivityProbabilities() :
elevatorDown(0.01f), stairsDown(0.01f),
stay(0.96f), stairsUp(0.01f), elevatorUp(0.01f) {;}
};
struct History {
Timestamp ts;
BarometerData data;
History(const Timestamp ts, const BarometerData data) : ts(ts), data(data) {;}
};
private:
std::vector<History> output;
bool initialize;
ActivityProbabilities currentActivity;
/** change this values for much success */
const unsigned long diffSize = 20; //the number values used for finding the activity.
Filter::ButterworthLP<float> butter = Filter::ButterworthLP<float>(10,0.05f,2);
FixedFrequencyInterpolator<float> ffi = FixedFrequencyInterpolator<float>(Timestamp::fromMS(100));
const float variance = 0.02f;
const float muStairs = 0.04f;
const float muStay = 0.00f;
const float muEleveator = 0.08f;
std::vector<float> densities = std::vector<float>(5, 1);
std::vector<float> densitiesOld = std::vector<float>(5, 1);
public:
/** ctor */
ActivityButterPressurePercent() : currentActivity(ActivityProbabilities(0.01f, 0.01f, 0.96f, 0.01f, 0.01f)){
initialize = true;
}
/** add new sensor readings that were received at the given timestamp */
ActivityProbabilities add(const Timestamp& ts, const BarometerData& baro) {
//init
if(initialize){
butter.stepInitialization(baro.hPa);
initialize = false;
return currentActivity;
}
bool newInterpolatedValues = false;
//interpolate & butter
auto callback = [&] (const Timestamp ts, const float val) {
float interpValue = val;
//butter
float butterValue = butter.process(interpValue);
output.push_back(History(ts, BarometerData(butterValue)));
newInterpolatedValues = true;
};
ffi.add(ts, baro.hPa, callback);
if(newInterpolatedValues == true){
//getActivity
if(output.size() > diffSize){
//diff
std::vector<float> diff;
for(unsigned long i = output.size() - diffSize; i < output.size() - 1; ++i){
float diffVal = output[i+1].data.hPa - output[i].data.hPa;
diff.push_back(diffVal);
}
float sum = 0;
for(float val : diff){
sum += val;
}
float actValue = sum;
//calculate the probabilites of walking down/up etc...
densitiesOld = densities;
//in one building there is an ultra fast elevator, therefore we need to clip the activity value...
if(actValue > muEleveator){
actValue = muEleveator;
}
if(actValue < -muEleveator){
actValue = -muEleveator;
}
float densityElevatorDown = Distribution::Normal<float>::getProbability(muEleveator, variance, actValue);
float densityStairsDown = Distribution::Normal<float>::getProbability(muStairs, variance, actValue);
float densityStay = Distribution::Normal<float>::getProbability(muStay, variance, actValue);
float densityStairsUp = Distribution::Normal<float>::getProbability(-muStairs, variance, actValue);
float densityElevatorUp = Distribution::Normal<float>::getProbability(-muEleveator, variance, actValue);
_assertTrue( (densityElevatorDown == densityElevatorDown), "the probability of densityElevatorDown is null!");
_assertTrue( (densityStairsDown == densityStairsDown), "the probability of densityStairsDown is null!");
_assertTrue( (densityStay == densityStay), "the probability of densityStay is null!");
_assertTrue( (densityStairsUp == densityStairsUp), "the probability of densityStairsUp is null!");
_assertTrue( (densityElevatorUp == densityElevatorUp), "the probability of densityElevatorUp is null!");
_assertTrue( (densityElevatorDown != 0.0f), "the probability of densityElevatorDown is null!");
_assertTrue( (densityStairsDown != 0.0f), "the probability of densityStairsDown is null!");
_assertTrue( (densityStay != 0.0f), "the probability of densityStay is null!");
_assertTrue( (densityStairsUp != 0.0f), "the probability of densityStairsUp is null!");
_assertTrue( (densityElevatorUp != 0.0f), "the probability of densityElevatorUp is null!");
//wenn aufzug / treppe der größte wert, werden für x timestamps auf die jeweilige katerogie multipliziert.
densities[0] = densityElevatorDown;
densities[1] = densityStairsDown;
densities[2] = densityStay;
densities[3] = densityStairsUp;
densities[4] = densityElevatorUp;
//normalize
float densitySum = densities[0] + densities[1] + densities[2] + densities[3] + densities[4];
for(unsigned long i = 0; i < densities.size(); ++i){
densities[i] /= densitySum;
//values cant be zero!
densities[i] = (densities[i] > 0.0f ? densities[i] : 0.01f);
}
currentActivity = ActivityProbabilities(densities[0], densities[1], densities[2], densities[3], densities[4]);
}
}
//retruns for every call, indepedent of callback.
return currentActivity;
}
/** get the current Activity */
ActivityProbabilities getCurrentActivity() {
return currentActivity;
}
};
#endif // ACTIVITYBUTTERPRESSUREPERCENT_H