This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
Indoor/navMesh/NavMeshTriangle.h
frank 55061ef0da minor changes to floorplan
fixed some compile issues
worked on nav-meshes
added some tests
2018-01-16 12:41:05 +01:00

231 lines
5.6 KiB
C++

#ifndef NAVMESHTRIANGLE_H
#define NAVMESHTRIANGLE_H
#include "../geo/Point3.h"
#include "../geo/Point2.h"
namespace NM {
/**
* represents one triangle within the NavMesh
* each Triangle has up to 3 neighbors (one per edge)
*
* for performance enhancements,
* some memeber attributes are pre-calculated once
*/
class NavMeshTriangle {
private:
template<typename> friend class NavMesh;
const Point3 p1;
const Point3 p2;
const Point3 p3;
const uint8_t type;
NavMeshTriangle* _neighbors[3];
int _numNeighbors;
private: // precalculated stuff
Point2 v0;
Point2 v1;
float dot00;
float dot01;
float dot11;
double invDenom;
float area;
float minZ;
float maxZ;
const Point3 center;
const Point3 v12;
const Point3 v13;
public:
/** ctor */
NavMeshTriangle(const Point3 p1, const Point3 p2, const Point3 p3, const uint8_t type) :
p1(p1), p2(p2), p3(p3), type(type),
_neighbors(), _numNeighbors(0),
center((p1+p2+p3)/3), v12(p2-p1), v13(p3-p1) {
precompute();
}
/** get the triangle's type */
uint8_t getType() const {return type;}
Point3 getP1() const {return p1;}
Point3 getP2() const {return p2;}
Point3 getP3() const {return p3;}
/** get the distance between the given point and the triangle using approximate tests */
float getDistanceApx(const Point3 pt) const {
// const float d1 = pt.getDistance(p1);
// const float d2 = pt.getDistance(p2);
// const float d3 = pt.getDistance(p3);
// const float d4 = pt.getDistance(center);
// const float d5 = pt.getDistance((p1-p2)/2);
// const float d6 = pt.getDistance((p2-p3)/2);
// const float d7 = pt.getDistance((p3-p1)/2);
// return std::min(d1, std::min(d2, std::min(d3, std::min(d4, std::min(d5, std::min(d6,d7))))));
// const float d1 = pt.getDistance(p1);
// const float d2 = pt.getDistance(p2);
// const float d3 = pt.getDistance(p3);
// const float d4 = pt.getDistance(center);
// return std::min(d1, std::min(d2, std::min(d3,d4)));
float bestD = 99999;
Point3 bestP;
Point3 dir12 = p2-p1;
Point3 dir13 = p3-p1;
Point3 dir23 = p3-p2;
for (float f = 0; f < 1; f += 0.05f) {
const Point3 pos1 = p1 + dir12 * f; const float dist1 = pos1.getDistance(pt);
const Point3 pos2 = p1 + dir13 * f; const float dist2 = pos2.getDistance(pt);
const Point3 pos3 = p2 + dir23 * f; const float dist3 = pos3.getDistance(pt);
if (dist1 < bestD) {bestP = pos1; bestD = dist1;}
if (dist2 < bestD) {bestP = pos2; bestD = dist2;}
if (dist3 < bestD) {bestP = pos3; bestD = dist3;}
}
return bestD;
}
bool operator == (const NavMeshTriangle& o) const {
return (p1 == o.p1) && (p2 == o.p2) && (p3 == o.p3);
}
/** is the triangle plain? (same Z for all points) */
bool isPlain() const {
const float d1 = std::abs(p1.z - p2.z);
const float d2 = std::abs(p2.z - p3.z);
return (d1 < 0.1) && (d2 < 0.1);
}
const NavMeshTriangle* const* begin() const {return &_neighbors[0];}
const NavMeshTriangle* const* end() const {return &_neighbors[_numNeighbors];}
Point3 getPoint(const float u, const float v) const {
return p1 + (v12*u) + (v13*v);
}
/** does the triangle contain the given 3D point? */
bool contains(const Point3 p) const {
return (minZ <= p.z) && (maxZ >= p.z) && contains(p.xy());
}
/** does the triangle contain the given 2D point? */
bool contains(const Point2 p) const {
const Point2 v2 = p - p1.xy();
// Compute dot products
float dot02 = dot(v0, v2);
float dot12 = dot(v1, v2);
// Compute barycentric coordinates
float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
float v = (dot00 * dot12 - dot01 * dot02) * invDenom;
// Check if point is in triangle
return (u >= 0) && (v >= 0) && (u + v <= 1);
}
/** estimate the correct z-value for the given 2D point */
Point3 toPoint3(const Point2 p) const {
const Point2 v2 = p - p1.xy();
// Compute dot products
float dot02 = dot(v0, v2);
float dot12 = dot(v1, v2);
// Compute barycentric coordinates
float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
float v = (dot00 * dot12 - dot01 * dot02) * invDenom;
const Point3 res = getPoint(v,u);
Assert::isNear(res.x, p.x, 1.0f, "TODO: high difference while mapping from 2D to 3D");
Assert::isNear(res.y, p.y, 1.0f, "TODO: high difference while mapping from 2D to 3D");
//return res;
return Point3(p.x, p.y, res.z); // only use the new z, keep input as-is
}
/** get the triangle's size */
float getArea() const {
return area;
}
/** get the triangle's center-point */
Point3 getCenter() const {
return center;
}
private:
/** perform some pre-calculations to speed things up */
void precompute() {
#warning "TODO, z buffer"
minZ = std::min(p1.z, std::min(p2.z, p3.z)) - 0.15; // TODO the builder does not align on the same height as we did
maxZ = std::max(p1.z, std::max(p2.z, p3.z)) + 0.15;
// Compute vectors
v0 = p3.xy() - p1.xy();
v1 = p2.xy() - p1.xy();
// Compute dot products
dot00 = dot(v0, v0);
dot01 = dot(v0, v1);
dot11 = dot(v1, v1);
// Compute barycentric coordinates
invDenom = 1.0 / ((double)dot00 * (double)dot11 - (double)dot01 * (double)dot01);
const float a = (p2-p1).length();
const float b = (p3-p1).length();
const float c = (p2-p3).length();
const float s = 0.5f * (a+b+c);
area = std::sqrt( s * (s-a) * (s-b) * (s-c) );
}
protected:
void addNeighbor(NavMeshTriangle* o) {
Assert::isBetween(_numNeighbors, 0, 3, "number of neighbors out of bounds");
_neighbors[_numNeighbors] = o;
++_numNeighbors;
}
};
}
#endif // NAVMESHTRIANGLE_H