This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
Indoor/grid/Grid.h
kazu 4f511d907e some fixes [multithreading,..]
needed interface changes [new options]
logger for android
wifi-ap-optimization
new test-cases
2016-09-28 12:19:14 +02:00

511 lines
14 KiB
C++
Executable File

#ifndef GRID_H
#define GRID_H
#include <vector>
#include <iostream>
#include <unordered_map>
#include <algorithm>
#include "../Assertions.h"
#include "../Exception.h"
#include "GridPoint.h"
#include "GridNode.h"
#include "../Assertions.h"
#include "../geo/BBox3.h"
#include "../misc/Debug.h"
/**
* grid of a given-size, storing some user-data-value which
* - extends GridPoint and GridNode
*
* Usage:
* for (Node& n : grid) {...}
* for (Node& n2 : grid.neighbors(n)) {...}
*
*/
template <typename T> class Grid {
static constexpr const char* name = "Grid";
#include "GridNeighborIterator.h"
/** UID for nodes */
typedef uint64_t UID;
private:
/** all elements (nodes) within the grid */
std::vector<T> nodes;
/** UID -> index mapping */
std::unordered_map<UID, int> hashes;
/** the user-given grid-size */
const int gridSize_cm;
public:
/** ctor with the grid's size (in cm) */
Grid(const int gridSize_cm) : gridSize_cm(gridSize_cm) {
//static_assert((sizeof(T::_idx) > 0), "T must inherit from GridNode!");
//static_assert((sizeof(T::x_cm) > 0), "T must inherit from GridPoint!");
StaticAssert::AinheritsB<T, GridNode>(); // "T must inherit from GridNode!"
StaticAssert::AinheritsB<T, GridPoint>(); // "T must inherit from GridPoint!"
Log::add(name, "empty grid with " + std::to_string(gridSize_cm) + "cm grid-size");
}
/** no-copy */
Grid(const Grid& o) = delete;
/**
* reset (clear) the grid
* remove all nodes, hashes, ..
*/
void reset() {
nodes.clear();
hashes.clear();
}
/** no-assign */
void operator = (const Grid& o) = delete;
/** allows for-each iteration over all included nodes */
decltype(nodes.begin()) begin() {return nodes.begin();}
/** allows for-each iteration over all included nodes */
decltype(nodes.end()) end() {return nodes.end();}
/** get the grid's size */
int getGridSize_cm() const {return gridSize_cm;}
/**
* add the given element to the grid.
* returns the index of the element within the internal data-structure
* @param elem the element to add
*/
int add(const T& elem) {
assertAligned(elem); // assert that the to-be-added element is aligned to the grid
return addUnaligned(elem);
}
/** add the given (not necessarly aligned) element to the grid */
int addUnaligned(const T& elem, const bool check=true) {
const UID uid = getUID(elem); // get the UID for this new element
if (check) {
Assert::isTrue(hashes.find(uid) == hashes.end(), "node's UID is already taken!"); // avoid potential errors
}
const int idx = nodes.size(); // next free index
nodes.push_back(elem); // add it to the grid
nodes.back()._idx = idx; // let the node know his own index
hashes[uid] = idx; // add an UID->index lookup
return idx; // done
}
/** connect (uni-dir) i1 -> i2 */
void connectUniDir(const int idx1, const int idx2) {
connectUniDir(nodes[idx1], nodes[idx2]);
}
/** connect (uni-dir) i1 -> i2 */
void connectUniDir(T& n1, const T& n2) {
Assert::isFalse(n1.hasNeighbor(n2._idx), "this neighbor is already connected"); // already connected?
Assert::notEqual(n1.getIdx(), n2.getIdx(), "can not connect node with itself");
Assert::isFalse(n1.fullyConnected(), "this node has already reached its neighbor-limit");
n1._neighbors[n1._numNeighbors] = n2._idx;
++n1._numNeighbors;
}
/**
* connect (bi-directional) the two provided nodes
* @param idx1 index of the first element
* @param idx2 index of the second element
*/
void connectBiDir(const int idx1, const int idx2) {
connectBiDir(nodes[idx1], nodes[idx2]);
}
/**
* connect (bi-directional) the two provided nodes
* @param n1 the first node
* @param n2 the second node
*/
void connectBiDir(T& n1, T& n2) {
connectUniDir(n1, n2);
connectUniDir(n2, n1);
}
/** get the number of contained nodes */
int getNumNodes() const {
return nodes.size();
}
/** get the number of neighbors for the given element */
int getNumNeighbors(const int idx) const {
return getNumNeighbors(nodes[idx]);
}
/** get the number of neighbors for the given element */
int getNumNeighbors(const T& e) const {
return e._numNeighbors;
}
/** get the n-th neighbor for the given node */
T& getNeighbor(const int nodeIdx, const int nth) const {
const T& node = nodes[nodeIdx];
return getNeighbor(node, nth);
}
/** get the n-th neighbor for the given node */
T& getNeighbor(const T& node, const int nth) const {
const T& neighbor = nodes[node._neighbors[nth]];
return (T&) neighbor;
}
/** do we have a center-point the given point belongs to? */
bool hasNodeFor(const GridPoint& p) const {
const UID uid = getUID(p);
return (hashes.find(uid) != hashes.end());
}
/** get a list of all nodes within the graph */
const std::vector<T>& getNodes() const {
return nodes;
}
/** get the center-node the given Point belongs to */
const T& getNodeFor(const GridPoint& p) {
const UID uid = getUID(p);
Assert::isTrue(hashes.find(uid) != hashes.end(), "element not found!");
return nodes[hashes[uid]];
}
/** get the center-node the given Point belongs to. or nullptr if not present */
const T* getNodePtrFor(const GridPoint& p) const {
auto it = hashes.find(getUID(p));
return (it == hashes.end()) ? (nullptr) : (&nodes[it->second]);
}
/** get the node nearest to the given positon */
const T& getNearestNode(const GridPoint& p) const {
auto comp = [p] (const T& a, const T& b) { return a.getDistanceInMeter(p) < b.getDistanceInMeter(p); };
auto it = std::min_element(nodes.begin(), nodes.end(), comp);
return nodes[it->getIdx()];
}
/** get the node nearest to the given positon, examining only the nodes given by the provided index-array */
const T& getNearestNode(const GridPoint& p, const std::vector<int>& indices) const {
auto comp = [&] (const int a, const int b) { return nodes[a].getDistanceInMeter(p) < nodes[b].getDistanceInMeter(p); };
auto it = std::min_element(indices.begin(), indices.end(), comp);
return nodes[it->getIdx()];
}
/** get the BBox for the given node */
GridNodeBBox getBBox(const int idx) const {
return getBBox(nodes[idx]);
}
/** get the BBox for the given node */
GridNodeBBox getBBox(const T& node) const {
return GridNodeBBox(node, gridSize_cm);
}
/**
* get an UID for the given point.
* this works only for aligned points.
*
*/
UID getUID(const GridPoint& p) const {
// sanity check (region between -1^19 and +1^19
const int32_t max = 1 << 19;
Assert::isBetween((int32_t)p.x_cm, -max, +max, "x out of bounds");
Assert::isBetween((int32_t)p.y_cm, -max, +max, "y out of bounds");
Assert::isBetween((int32_t)p.z_cm, -max, +max, "z out of bounds");
// shift by half of the allowed width of 20 bit to allow negative regions:
// -> 19 bit positive and 19 bit negative
const uint64_t center = 1 << 19;
// build
const uint64_t x = center + (int64_t) std::round((p.x_cm) / (float)gridSize_cm);
const uint64_t y = center + (int64_t) std::round((p.y_cm) / (float)gridSize_cm);
const uint64_t z = center + (int64_t) std::round((p.z_cm) / (float)gridSize_cm * 5); // z is usually much lower and not always aligned -> allow more room for hashes
return (z << 40) | (y << 20) | (x << 0);
}
/** array access */
T& operator [] (const int idx) {
Assert::isBetween(idx, 0, getNumNodes()-1, "index out of bounds");
return nodes[idx];
}
/** const array access */
const T& operator [] (const int idx) const {
Assert::isBetween(idx, 0, getNumNodes()-1, "index out of bounds");
return nodes[idx];
}
/** disconnect the two nodes (bidirectional) */
void disconnectBiDir(const int idx1, const int idx2) {
disconnectBiDir(nodes[idx1], nodes[idx2]);
}
/** disconnect the two nodes (bidirectional) */
void disconnectBiDir(T& n1, T& n2) {
disconnectUniDir(n1, n2);
disconnectUniDir(n2, n1);
}
/** remove the connection from n1 to n2 (not the other way round!) */
void disconnectUniDir(const int idx1, const int idx2) {
disconnectUniDir(nodes[idx1], nodes[idx2]);
}
/** remove the connection from n1 to n2 (not the other way round!) */
void disconnectUniDir(T& n1, T& n2) {
for (int n = 0; n < n1._numNeighbors; ++n) {
if (n1._neighbors[n] == n2._idx) {
arrayRemove(n1._neighbors, n, n1._numNeighbors);
--n1._numNeighbors;
return;
}
}
}
/** remove the given array-index by moving all follwing elements down by one */
template <typename X> void arrayRemove(X* arr, const int idxToRemove, const int arrayLen) {
for (int i = idxToRemove+1; i < arrayLen; ++i) {
arr[i-1] = arr[i];
}
}
/**
* mark the given node for deletion
* see: cleanup()
*/
void remove(const int idx) {
remove(nodes[idx]);
}
/**
* mark the given node for deletion
* see: cleanup()
*/
void remove(T& node) {
// disconnect from all neighbors
while (node._numNeighbors) {
// by removing one neighbor, all others are shifted to close the gap within the array
// its therefor ok to always delete array index [0]
disconnectBiDir(node._idx, node._neighbors[0]);
}
// remove from hash-list
hashes.erase(getUID(node));
// mark for deleteion (see: cleanup())
node._idx = -1;
}
/** remove all nodes marked for deletion */
void cleanup() {
debugMemoryUsage();
Log::add(name, "running grid cleanup", false);
Log::tick();
// generate a look-up-table for oldIndex (before deletion) -> newIndex (after deletion)
std::vector<int> oldToNew; oldToNew.resize(nodes.size());
int newIdx = 0;
for (size_t oldIdx = 0; oldIdx < nodes.size(); ++oldIdx) {
if (nodes[oldIdx].getIdx() != -1) {
oldToNew[oldIdx] = newIdx;
++newIdx;
}
}
// adjust all indices from the old to the new mapping
for (size_t i = 0; i < nodes.size(); ++i) {
// skip the nodes actually marked for deletion
if (nodes[i]._idx == -1) {continue;}
// adjust the node's index
nodes[i]._idx = oldToNew[nodes[i]._idx];
// adjust its neighbor's indices
for (int j = 0; j < nodes[i]._numNeighbors; ++j) {
nodes[i]._neighbors[j] = oldToNew[nodes[i]._neighbors[j]];
}
}
// MUCH(!!!) faster than deleting nodes from the existing node-vector
// is to build a new one and swap those two
std::vector<T> newNodes;
for (size_t i = 0; i < nodes.size(); ++i) {
if (nodes[i]._idx != -1) {newNodes.push_back(nodes[i]);}
}
std::swap(nodes, newNodes);
Log::tock();
rebuildHashes();
debugMemoryUsage();
}
/** rebuild the UID-hash-list */
void rebuildHashes() {
Log::add(name, "rebuilding UID hashes", false);
Log::tick();
hashes.clear();
for (size_t idx = 0; idx < nodes.size(); ++idx) {
hashes[getUID(nodes[idx])] = idx;
}
Log::tock();
}
/** debug-print the grid's current memory usage */
void debugMemoryUsage() {
const uint32_t bytes = nodes.size() * sizeof(T);
const uint32_t numNodes = nodes.size();
uint32_t numNeighbors = 0;
//uint32_t numNeighborsUnused = 0;
for (T& n : nodes) {
numNeighbors += n._numNeighbors;
}
Log::add(name, "memory: " + std::to_string(bytes/1024.0f/1024.0f) + " MB in " + std::to_string(numNodes) + " nodes");
}
public:
/** serialize into the given stream */
void write(std::ostream& out) {
// size (in bytes) one node has. this is a sanity check whether the file matches the code!
const int nodeSize = sizeof(T);
out.write((const char*) &nodeSize, sizeof(nodeSize));
// number of nodes
const int numNodes = nodes.size();
Assert::isTrue(numNodes > 0, "grid says it contains 0 nodes. there must be some error!");
out.write((const char*) &numNodes, sizeof(numNodes));
// serialize
for (const T& node : nodes) {
out.write((const char*) &node, sizeof(T));
}
// serialize static parameters
T::staticSerialize(out);
out.flush();
}
/** deserialize from the given stream */
void read(std::istream& inp) {
Log::add(name, "loading grid from input-stream");
// size (in bytes) one node has. this is a sanity check whether the file matches the code!
int nodeSize;
inp.read((char*) &nodeSize, sizeof(nodeSize));
Assert::equal(nodeSize, (int)sizeof(T), "sizeof(node) of the saved grid does not match sizeof(node) for the code!");
// number of nodes
int numNodes;
inp.read((char*) &numNodes, sizeof(numNodes));
Assert::isTrue(numNodes > 0, "grid-file says it contains 0 nodes. there must be some error!");
// allocate node-space
nodes.resize(numNodes);
// deserialize
inp.read((char*) nodes.data(), numNodes*sizeof(T));
Log::add(name, "deserialized " + std::to_string(nodes.size()) + " nodes");
// deserialize static parameters
T::staticDeserialize(inp);
// update
rebuildHashes();
}
public:
NeighborForEach neighbors(const int idx) {
return neighbors(nodes[idx]);
}
NeighborForEach neighbors(const T& node) {
return NeighborForEach(*this, node._idx);
}
/** get the grid's bounding-box. EXPENSIVE! */
BBox3 getBBox() const {
BBox3 bb;
for (const T& n : nodes) {
bb.add( Point3(n.x_cm, n.y_cm, n.z_cm) );
}
return bb;
}
int kdtree_get_point_count() const {
return nodes.size();
}
template <class BBOX> bool kdtree_get_bbox(BBOX& bb) const { (void) bb; return false; }
inline float kdtree_get_pt(const size_t idx, const int dim) const {
const T& p = nodes[idx];
if (dim == 0) {return p.x_cm;}
if (dim == 1) {return p.y_cm;}
if (dim == 2) {return p.z_cm;}
throw 1;
}
inline float kdtree_distance(const float* p1, const size_t idx_p2, size_t) const {
const float d0 = p1[0] - nodes[idx_p2].x_cm;
const float d1 = p1[1] - nodes[idx_p2].y_cm;
const float d2 = p1[2] - nodes[idx_p2].z_cm;
return (d0*d0) + (d1*d1) + (d2*d2);
}
private:
/** asssert that the given element is aligned to the grid */
void assertAligned(const T& elem) {
if (((int)elem.x_cm % gridSize_cm) != 0) {throw Exception("element's x is not aligned!");}
if (((int)elem.y_cm % gridSize_cm) != 0) {throw Exception("element's y is not aligned!");}
//if (((int)elem.z_cm % gridSize_cm) != 0) {throw Exception("element's z is not aligned!");}
}
};
#endif // GRID_H