734 lines
27 KiB
C++
734 lines
27 KiB
C++
#ifndef NAV_MESH_FACTORY_H
|
|
#define NAV_MESH_FACTORY_H
|
|
|
|
#include <vector>
|
|
|
|
#include "../floorplan/v2/Floorplan.h"
|
|
#include "../floorplan/v2/FloorplanHelper.h"
|
|
|
|
#include "../geo/ConvexHull2.h"
|
|
#include "../geo/GPCPolygon2.h"
|
|
#include "../floorplan/3D/objects/OBJPool.h"
|
|
|
|
#include "NavMesh.h"
|
|
#include "NavMeshTriangle.h"
|
|
#include "NavMeshFactoryListener.h"
|
|
#include "NavMeshType.h"
|
|
#include "NavMeshSettings.h"
|
|
|
|
#include "../lib/Recast/Recast.h"
|
|
#include <string.h> // memset
|
|
|
|
namespace NM {
|
|
|
|
struct TriangleIn {
|
|
Point3 p1;
|
|
Point3 p2;
|
|
Point3 p3;
|
|
uint8_t type;
|
|
TriangleIn(const Point3 p1, const Point3 p2, const Point3 p3, const uint8_t type) : p1(p1), p2(p2), p3(p3), type(type) {;}
|
|
};
|
|
|
|
struct TriangleOut {
|
|
|
|
Point3 p1;
|
|
Point3 p2;
|
|
Point3 p3;
|
|
|
|
int numNeighbors = 0;
|
|
int neighbors[3]; // each triangle has max 3 neighbors
|
|
|
|
TriangleOut(const Point3 p1, const Point3 p2, const Point3 p3) : p1(p1), p2(p2), p3(p3), neighbors() {;}
|
|
|
|
Point3 center() const {
|
|
return (p1+p2+p3) / 3;
|
|
}
|
|
|
|
};
|
|
|
|
#define NMF_STEPS 8
|
|
|
|
template <typename Tria> class NavMeshFactory {
|
|
|
|
private:
|
|
|
|
NavMesh<Tria>* dst = nullptr;
|
|
|
|
const NavMeshSettings& settings;
|
|
|
|
std::vector<TriangleIn> triangles;
|
|
|
|
public:
|
|
|
|
NavMeshFactory(NavMesh<Tria>* dst, const NavMeshSettings& settings) : dst(dst), settings(settings) {
|
|
|
|
}
|
|
|
|
void build(Floorplan::IndoorMap* map, NavMeshFactoryListener* listener = nullptr) {
|
|
if (listener) {listener->onNavMeshBuildUpdateMajor("preparing");}
|
|
if (listener) {listener->onNavMeshBuildUpdateMajor(NMF_STEPS, 0);}
|
|
const BBox3 bbox = FloorplanHelper::getBBox(map);
|
|
for (const Floorplan::Floor* floor : map->floors) {
|
|
add(floor);
|
|
}
|
|
fire(bbox, listener);
|
|
}
|
|
|
|
// /** get the smallest obstacle size that can be detected */
|
|
// float getMaxQuality_m() const {
|
|
// return maxQuality_m;
|
|
// }
|
|
|
|
private:
|
|
|
|
/** add one floor */
|
|
void add(const Floorplan::Floor* floor) {
|
|
|
|
if (!floor->enabled) {return;}
|
|
|
|
// NavMeshPoly nmPoly(floor->atHeight);
|
|
|
|
// for (Floorplan::FloorOutlinePolygon* poly : floor->outline) {
|
|
// if (poly->method == Floorplan::OutlineMethod::ADD) {
|
|
// nmPoly.add(poly->poly);
|
|
// }
|
|
// }
|
|
|
|
// for (Floorplan::FloorOutlinePolygon* poly : floor->outline) {
|
|
// if (poly->method == Floorplan::OutlineMethod::REMOVE) {
|
|
// nmPoly.remove(poly->poly);
|
|
// }
|
|
// }
|
|
|
|
// for (Floorplan::FloorObstacle* obs : floor->obstacles) {
|
|
// Floorplan::FloorObstacleLine* line = dynamic_cast<Floorplan::FloorObstacleLine*>(obs);
|
|
// if (line != nullptr) {
|
|
// nmPoly.remove(getPolygon(line));
|
|
// }
|
|
// }
|
|
|
|
// std::vector<std::vector<Point3>> tmp = nmPoly.get();
|
|
// for (const std::vector<Point3>& tria : tmp) {
|
|
// const TriangleIn t(tria[0], tria[1], tria[2], 1; // TODO outdoor
|
|
// triangles.push_back(t);
|
|
// }
|
|
|
|
|
|
|
|
// we need this strange loop, as we need to distinguish between indoor and outdoor regions/polygons
|
|
// adding all "add" polygons first and removing "remove" polygons / obstacles afterwards is more performant
|
|
// but does not allow for tagging the "add" polygons (indoor/outdoor/...)
|
|
// thats why we have to tread each "add" polygon on its own (and remove all potential elements from it)
|
|
for (Floorplan::FloorOutlinePolygon* poly : floor->outline) {
|
|
|
|
// if this is a to-be-added polygon, add it
|
|
if (poly->method == Floorplan::OutlineMethod::ADD) {
|
|
|
|
GPCPolygon2 nmPoly(floor->atHeight);
|
|
nmPoly.add(poly->poly);
|
|
|
|
// get all other polygons of this floor, that are tagged as "remove" and remove them (many will be outside of the added polygon)
|
|
for (Floorplan::FloorOutlinePolygon* poly : floor->outline) {
|
|
if (poly->method == Floorplan::OutlineMethod::REMOVE) {
|
|
nmPoly.remove(poly->poly);
|
|
}
|
|
}
|
|
|
|
// get all obstacles of this floor and remove them from the polygon as well (many will be outside of the added polygon)
|
|
for (Floorplan::FloorObstacle* obs : floor->obstacles) {
|
|
|
|
// wall-obstacles
|
|
Floorplan::FloorObstacleWall* wall = dynamic_cast<Floorplan::FloorObstacleWall*>(obs);
|
|
if (wall != nullptr) {
|
|
for (const Floorplan::Polygon2& poly : getPolygons(wall, false)) {
|
|
nmPoly.remove(poly);
|
|
}
|
|
}
|
|
|
|
// line-obstacles
|
|
Floorplan::FloorObstacleLine* line = dynamic_cast<Floorplan::FloorObstacleLine*>(obs);
|
|
if (line != nullptr) {
|
|
nmPoly.remove(getPolygon(line));
|
|
}
|
|
|
|
// object-obstacles
|
|
Floorplan::FloorObstacleObject* obj = dynamic_cast<Floorplan::FloorObstacleObject*>(obs);
|
|
if (obj != nullptr) {
|
|
nmPoly.remove(getPolygon(obj));
|
|
}
|
|
|
|
}
|
|
|
|
// construct and add
|
|
std::vector<std::vector<Point3>> tmp = nmPoly.get();
|
|
int type = poly->outdoor ? (int) NavMeshType::FLOOR_OUTDOOR : (int) NavMeshType::FLOOR_INDOOR;
|
|
for (const std::vector<Point3>& tria : tmp) {
|
|
const TriangleIn t(tria[0], tria[1], tria[2], type);
|
|
triangles.push_back(t);
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// add all stairs
|
|
// those must be DIRECTLY connected to the ending floor (stair's ending edge connected to an edge of the floor)
|
|
// otherwise the stair ends UNDER a floor polygon and is thus not added (higher polygons always win)
|
|
for (const Floorplan::Stair* stair : floor->stairs) {
|
|
const std::vector<Floorplan::Quad3> quads = Floorplan::getQuads(stair->getParts(), floor); // slightly grow to ensure connection?!
|
|
for (const Floorplan::Quad3& quad : quads) {
|
|
|
|
// stair has two options: either leveled parts (no steps) and skewed parts (steps)
|
|
// as those affect the pedestrian's step-length, we tag them differently
|
|
const int type = quad.isLeveled() ? (int) NavMeshType::STAIR_LEVELED : (int) NavMeshType::STAIR_SKEWED;
|
|
const TriangleIn t1(quad.p1, quad.p2, quad.p3, type);
|
|
const TriangleIn t2(quad.p1, quad.p3, quad.p4, type);
|
|
triangles.push_back(t1);
|
|
triangles.push_back(t2);
|
|
|
|
// sanity check. should never happen. just to be ultra sure
|
|
const Point3 norm1 = cross((t1.p2-t1.p1), (t1.p3-t1.p1));
|
|
const Point3 norm2 = cross((t2.p2-t2.p1), (t2.p3-t2.p1));
|
|
Assert::isTrue(norm1.z > 0, "detected invalid culling for stair-quad. normal points downwards");
|
|
Assert::isTrue(norm2.z > 0, "detected invalid culling for stair-quad. normal points downwards");
|
|
|
|
}
|
|
}
|
|
|
|
// finally create additional triangles for the doors to tag doors differently (tagging also seems to improve the triangulation result)
|
|
// note: door-regions are already walkable as doors are NOT removed from the outline
|
|
// however: adding them again here seems to work.. triangles at the end of the list seem to overwrite (tagging) previous ones -> fine
|
|
{
|
|
|
|
// add (overlay) all doors for tagging them within the plan
|
|
GPCPolygon2 nmDoors(floor->atHeight);
|
|
for (Floorplan::FloorObstacle* obs : floor->obstacles) {
|
|
Floorplan::FloorObstacleDoor* door = dynamic_cast<Floorplan::FloorObstacleDoor*>(obs);
|
|
if (door != nullptr) {
|
|
nmDoors.add(getPolygon(door));
|
|
}
|
|
}
|
|
|
|
for (Floorplan::FloorObstacle* obs : floor->obstacles) {
|
|
Floorplan::FloorObstacleWall* wall = dynamic_cast<Floorplan::FloorObstacleWall*>(obs);
|
|
if (wall != nullptr) {
|
|
for (const Floorplan::Polygon2& poly : getPolygons(wall, true)) {
|
|
nmDoors.add(poly);
|
|
}
|
|
}
|
|
}
|
|
|
|
// construct and add triangles
|
|
std::vector<std::vector<Point3>> tmp = nmDoors.get();
|
|
for (const std::vector<Point3>& tria : tmp) {
|
|
const TriangleIn t(tria[0], tria[1], tria[2], (int) NavMeshType::DOOR);
|
|
triangles.push_back(t);
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
bool fire(BBox3 bbox, NavMeshFactoryListener* listener) {
|
|
|
|
std::vector<int> tData;
|
|
std::vector<float> vData;
|
|
std::vector<uint8_t> typeData;
|
|
|
|
if (listener) {listener->onNavMeshBuildUpdateMajor("building polygons");}
|
|
if (listener) {listener->onNavMeshBuildUpdateMajor(NMF_STEPS, 1);}
|
|
|
|
// floor outlines
|
|
for (const TriangleIn& t : triangles) {
|
|
|
|
// swap YZ and polygon order
|
|
int startVert = vData.size() / 3;
|
|
|
|
// invert triangle ? (CW vs CCW)
|
|
// ensure normal points UP
|
|
const Point3 norm = cross((t.p2-t.p1), (t.p3-t.p1));
|
|
if (norm.z > 0) {
|
|
tData.push_back(startVert + 0);
|
|
tData.push_back(startVert + 2);
|
|
tData.push_back(startVert + 1);
|
|
} else {
|
|
tData.push_back(startVert + 0);
|
|
tData.push_back(startVert + 1);
|
|
tData.push_back(startVert + 2);
|
|
}
|
|
|
|
typeData.push_back(t.type);
|
|
|
|
vData.push_back(t.p1.x);
|
|
vData.push_back(t.p1.z);
|
|
vData.push_back(t.p1.y);
|
|
|
|
vData.push_back(t.p2.x);
|
|
vData.push_back(t.p2.z);
|
|
vData.push_back(t.p2.y);
|
|
|
|
vData.push_back(t.p3.x);
|
|
vData.push_back(t.p3.z);
|
|
vData.push_back(t.p3.y);
|
|
|
|
}
|
|
|
|
unsigned char* m_triareas = typeData.data();
|
|
const float* verts = vData.data();
|
|
const int* tris = tData.data();
|
|
|
|
int ntris = tData.size() / 3;
|
|
int nverts = vData.size() / 3;
|
|
|
|
|
|
//unsigned char* m_triareas;
|
|
rcHeightfield* m_solid;
|
|
rcCompactHeightfield* m_chf;
|
|
rcContourSet* m_cset;
|
|
rcPolyMesh* m_pmesh;
|
|
rcConfig m_cfg;
|
|
rcPolyMeshDetail* m_dmesh;
|
|
rcContext* m_ctx = new rcContext();
|
|
|
|
// float m_cellSize = maxQuality_m/2.0f; //0.3f; // ensure quality is enough to fit maxQuality_m
|
|
// float m_cellHeight = maxQuality_m/2.0f; //0.2f;
|
|
// float m_agentHeight = 1.8f;
|
|
// float m_agentRadius = 0.2f;//0.6f;
|
|
// float m_agentMaxClimb = maxQuality_m; // 0.9f; // prevent jumping onto stairs from the side of the stair. setting this below 2xgrid-size will fail!
|
|
// float m_agentMaxSlope = 45.0f; // elevator???
|
|
// float m_regionMinSize = 2;//8;
|
|
// float m_regionMergeSize = 20;
|
|
// float m_edgeMaxLen = 10.0f; // maximal size for one triangle. too high = too many samples when walking!
|
|
// float m_edgeMaxError = 1.1f; //1.3f; // higher values allow joining some small triangles
|
|
// float m_vertsPerPoly = 3;//6.0f;
|
|
// float m_detailSampleDist = 6.0f;
|
|
// float m_detailSampleMaxError = 1.0f;//1.0f;
|
|
// int m_partitionType = SAMPLE_PARTITION_WATERSHED; // SAMPLE_PARTITION_WATERSHED SAMPLE_PARTITION_MONOTONE SAMPLE_PARTITION_LAYERS
|
|
|
|
|
|
// Init build configuration from GUI
|
|
memset(&m_cfg, 0, sizeof(m_cfg));
|
|
m_cfg.cs = settings.getCellSizeXY();
|
|
m_cfg.ch = settings.getCellSizeZ();
|
|
m_cfg.walkableSlopeAngle = settings.agentMaxSlope;
|
|
m_cfg.walkableHeight = (int)ceilf(settings.agentHeight / m_cfg.ch);
|
|
m_cfg.walkableClimb = (int)floorf(settings.getMaxClimb() / m_cfg.ch);
|
|
m_cfg.walkableRadius = (int)ceilf(settings.agentRadius / m_cfg.cs);
|
|
m_cfg.maxEdgeLen = (int)(settings.edgeMaxLen / settings.getCellSizeXY());
|
|
m_cfg.maxSimplificationError = settings.edgeMaxError;
|
|
m_cfg.minRegionArea = (int)rcSqr(settings.regionMinSize); // Note: area = size*size
|
|
m_cfg.mergeRegionArea = (int)rcSqr(settings.regionMergeSize); // Note: area = size*size
|
|
m_cfg.maxVertsPerPoly = settings.vertsPerPoly;
|
|
m_cfg.detailSampleDist = settings.detailSampleDist < 0.9f ? 0 : settings.getCellSizeXY() * settings.detailSampleDist;
|
|
m_cfg.detailSampleMaxError = settings.getCellSizeZ() * settings.detailSampleMaxError;
|
|
|
|
float bmin[3] = {bbox.getMin().x, bbox.getMin().z, bbox.getMin().y};
|
|
float bmax[3] = {bbox.getMax().x, bbox.getMax().z, bbox.getMax().y};// x/z swapped?
|
|
|
|
// Set the area where the navigation will be build.
|
|
// Here the bounds of the input mesh are used, but the
|
|
// area could be specified by an user defined box, etc.
|
|
rcVcopy(m_cfg.bmin, bmin);
|
|
rcVcopy(m_cfg.bmax, bmax);
|
|
rcCalcGridSize(m_cfg.bmin, m_cfg.bmax, m_cfg.cs, &m_cfg.width, &m_cfg.height);
|
|
|
|
// Reset build times gathering.
|
|
m_ctx->resetTimers();
|
|
|
|
// Start the build process.
|
|
m_ctx->startTimer(RC_TIMER_TOTAL);
|
|
|
|
m_ctx->log(RC_LOG_PROGRESS, "Building navigation:");
|
|
m_ctx->log(RC_LOG_PROGRESS, " - %d x %d cells", m_cfg.width, m_cfg.height);
|
|
m_ctx->log(RC_LOG_PROGRESS, " - %.1fK verts, %.1fK tris", nverts/1000.0f, ntris/1000.0f);
|
|
|
|
//
|
|
// Step 2. Rasterize input polygon soup.
|
|
//
|
|
|
|
if (listener) {listener->onNavMeshBuildUpdateMajor("rasterizing polygons");}
|
|
if (listener) {listener->onNavMeshBuildUpdateMajor(NMF_STEPS, 2);}
|
|
|
|
// Allocate voxel heightfield where we rasterize our input data to.
|
|
m_solid = rcAllocHeightfield();
|
|
if (!m_solid) {
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'solid'.");
|
|
return false;
|
|
}
|
|
if (!rcCreateHeightfield(m_ctx, *m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch)) {
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create solid heightfield.");
|
|
return false;
|
|
}
|
|
|
|
// Allocate array that can hold triangle area types.
|
|
// If you have multiple meshes you need to process, allocate
|
|
// and array which can hold the max number of triangles you need to process.
|
|
// m_triareas = new unsigned char[ntris];
|
|
// if (!m_triareas)
|
|
// {
|
|
// m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'm_triareas' (%d).", ntris);
|
|
// return false;
|
|
// }
|
|
|
|
// Find triangles which are walkable based on their slope and rasterize them.
|
|
// If your input data is multiple meshes, you can transform them here, calculate
|
|
// the are type for each of the meshes and rasterize them.
|
|
//memset(m_triareas, 0, ntris*sizeof(unsigned char));
|
|
//rcMarkWalkableTriangles(m_ctx, m_cfg.walkableSlopeAngle, verts, nverts, tris, ntris, m_triareas);
|
|
if (!rcRasterizeTriangles(m_ctx, verts, nverts, tris, m_triareas, ntris, *m_solid, m_cfg.walkableClimb)) {
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not rasterize triangles.");
|
|
return false;
|
|
}
|
|
|
|
// bool m_keepInterResults = false;
|
|
bool m_filterLowHangingObstacles = false;
|
|
bool m_filterLedgeSpans = false;
|
|
bool m_filterWalkableLowHeightSpans = false;
|
|
|
|
// Step 3. Filter walkables surfaces.
|
|
if (listener) {listener->onNavMeshBuildUpdateMajor("filtering");}
|
|
if (listener) {listener->onNavMeshBuildUpdateMajor(NMF_STEPS, 3);}
|
|
|
|
// Once all geoemtry is rasterized, we do initial pass of filtering to
|
|
// remove unwanted overhangs caused by the conservative rasterization
|
|
// as well as filter spans where the character cannot possibly stand.
|
|
if (m_filterLowHangingObstacles)
|
|
rcFilterLowHangingWalkableObstacles(m_ctx, m_cfg.walkableClimb, *m_solid);
|
|
if (m_filterLedgeSpans)
|
|
rcFilterLedgeSpans(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid);
|
|
if (m_filterWalkableLowHeightSpans)
|
|
rcFilterWalkableLowHeightSpans(m_ctx, m_cfg.walkableHeight, *m_solid);
|
|
|
|
|
|
// Step 4. Partition walkable surface to simple regions.
|
|
if (listener) {listener->onNavMeshBuildUpdateMajor("partitioning");}
|
|
if (listener) {listener->onNavMeshBuildUpdateMajor(NMF_STEPS, 4);}
|
|
|
|
// Compact the heightfield so that it is faster to handle from now on.
|
|
// This will result more cache coherent data as well as the neighbours
|
|
// between walkable cells will be calculated.
|
|
m_chf = rcAllocCompactHeightfield();
|
|
if (!m_chf) {
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'chf'.");
|
|
return false;
|
|
}
|
|
if (!rcBuildCompactHeightfield(m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid, *m_chf)) {
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build compact data.");
|
|
return false;
|
|
}
|
|
|
|
//if (!m_keepInterResults) {
|
|
rcFreeHeightField(m_solid);
|
|
m_solid = 0;
|
|
//}
|
|
|
|
// Erode the walkable area by agent radius.
|
|
if (!rcErodeWalkableArea(m_ctx, m_cfg.walkableRadius, *m_chf))
|
|
{
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not erode.");
|
|
return false;
|
|
}
|
|
|
|
// (Optional) Mark areas.
|
|
// const ConvexVolume* vols = m_geom->getConvexVolumes();
|
|
// for (int i = 0; i < m_geom->getConvexVolumeCount(); ++i)
|
|
// rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *m_chf);
|
|
|
|
|
|
// Partition the heightfield so that we can use simple algorithm later to triangulate the walkable areas.
|
|
// There are 3 martitioning methods, each with some pros and cons:
|
|
// 1) Watershed partitioning
|
|
// - the classic Recast partitioning
|
|
// - creates the nicest tessellation
|
|
// - usually slowest
|
|
// - partitions the heightfield into nice regions without holes or overlaps
|
|
// - the are some corner cases where this method creates produces holes and overlaps
|
|
// - holes may appear when a small obstacles is close to large open area (triangulation can handle this)
|
|
// - overlaps may occur if you have narrow spiral corridors (i.e stairs), this make triangulation to fail
|
|
// * generally the best choice if you precompute the nacmesh, use this if you have large open areas
|
|
// 2) Monotone partioning
|
|
// - fastest
|
|
// - partitions the heightfield into regions without holes and overlaps (guaranteed)
|
|
// - creates long thin polygons, which sometimes causes paths with detours
|
|
// * use this if you want fast navmesh generation
|
|
// 3) Layer partitoining
|
|
// - quite fast
|
|
// - partitions the heighfield into non-overlapping regions
|
|
// - relies on the triangulation code to cope with holes (thus slower than monotone partitioning)
|
|
// - produces better triangles than monotone partitioning
|
|
// - does not have the corner cases of watershed partitioning
|
|
// - can be slow and create a bit ugly tessellation (still better than monotone)
|
|
// if you have large open areas with small obstacles (not a problem if you use tiles)
|
|
// * good choice to use for tiled navmesh with medium and small sized tiles
|
|
|
|
|
|
switch (settings.partitionType) {
|
|
|
|
case SamplePartitionType::SAMPLE_PARTITION_WATERSHED:
|
|
|
|
// Prepare for region partitioning, by calculating distance field along the walkable surface.
|
|
if (!rcBuildDistanceField(m_ctx, *m_chf)) {
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build distance field.");
|
|
return false;
|
|
}
|
|
|
|
// Partition the walkable surface into simple regions without holes.
|
|
if (!rcBuildRegions(m_ctx, *m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) {
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build watershed regions.");
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case SamplePartitionType::SAMPLE_PARTITION_MONOTONE:
|
|
|
|
// Partition the walkable surface into simple regions without holes.
|
|
// Monotone partitioning does not need distancefield.
|
|
if (!rcBuildRegionsMonotone(m_ctx, *m_chf, 0, m_cfg.minRegionArea, m_cfg.mergeRegionArea)) {
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build monotone regions.");
|
|
return false;
|
|
}
|
|
|
|
break;
|
|
|
|
case SamplePartitionType::SAMPLE_PARTITION_LAYERS:
|
|
|
|
// Partition the walkable surface into simple regions without holes.
|
|
if (!rcBuildLayerRegions(m_ctx, *m_chf, 0, m_cfg.minRegionArea)) {
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build layer regions.");
|
|
return false;
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
throw Exception("unsupported SamplePartitionType");
|
|
|
|
}
|
|
|
|
// Step 5. Trace and simplify region contours.
|
|
if (listener) {listener->onNavMeshBuildUpdateMajor("tracing");}
|
|
if (listener) {listener->onNavMeshBuildUpdateMajor(NMF_STEPS, 5);}
|
|
|
|
// Create contours.
|
|
m_cset = rcAllocContourSet();
|
|
if (!m_cset) {
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'cset'.");
|
|
return false;
|
|
}
|
|
if (!rcBuildContours(m_ctx, *m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, *m_cset)) {
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not create contours.");
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// Step 6. Build polygons mesh from contours.
|
|
if (listener) {listener->onNavMeshBuildUpdateMajor("building triangles");}
|
|
if (listener) {listener->onNavMeshBuildUpdateMajor(NMF_STEPS, 6);}
|
|
|
|
// Build polygon navmesh from the contours.
|
|
m_pmesh = rcAllocPolyMesh();
|
|
if (!m_pmesh) {
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmesh'.");
|
|
return false;
|
|
}
|
|
if (!rcBuildPolyMesh(m_ctx, *m_cset, m_cfg.maxVertsPerPoly, *m_pmesh)) {
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not triangulate contours.");
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// Step 7. Create detail mesh which allows to access approximate height on each polygon.
|
|
if (listener) {listener->onNavMeshBuildUpdateMajor("building details");}
|
|
if (listener) {listener->onNavMeshBuildUpdateMajor(NMF_STEPS, 7);}
|
|
|
|
m_dmesh = rcAllocPolyMeshDetail();
|
|
if (!m_dmesh) {
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmdtl'.");
|
|
return false;
|
|
}
|
|
|
|
if (!rcBuildPolyMeshDetail(m_ctx, *m_pmesh, *m_chf, m_cfg.detailSampleDist, m_cfg.detailSampleMaxError, *m_dmesh)) {
|
|
m_ctx->log(RC_LOG_ERROR, "buildNavigation: Could not build detail mesh.");
|
|
return false;
|
|
}
|
|
|
|
//if (!m_keepInterResults) {
|
|
rcFreeCompactHeightfield(m_chf);
|
|
m_chf = 0;
|
|
rcFreeContourSet(m_cset);
|
|
m_cset = 0;
|
|
//}
|
|
|
|
|
|
// std::vector<TriangleOut> res;
|
|
|
|
const float* orig = m_pmesh->bmin;
|
|
|
|
// https://github.com/recastnavigation/recastnavigation/blob/master/Docs/Extern/Recast_api.txt
|
|
for (int i = 0; i < m_pmesh->npolys; ++i) {
|
|
|
|
const unsigned short* p = &m_pmesh->polys[i*m_pmesh->nvp*2];
|
|
|
|
const uint8_t type = m_pmesh->areas[i];
|
|
|
|
// Each entry is <tt>2 * #nvp</tt> in length. The first half of the entry
|
|
// contains the indices of the polygon. The first instance of #RC_MESH_NULL_IDX
|
|
// indicates the end of the indices for the entry. The second half contains
|
|
// indices to neighbor polygons. A value of #RC_MESH_NULL_IDX indicates no
|
|
// connection for the associated edge. (I.e. The edge is a solid border.)
|
|
|
|
// we only use exactly 3 vertices per polygon, no iteration needed
|
|
|
|
// for (int j = 0; j < m_pmesh->nvp; ++j) {
|
|
// if (p[j] == RC_MESH_NULL_IDX) {break;}
|
|
|
|
// const unsigned short* v = &m_pmesh->verts[p[j]*3];
|
|
// const float x = orig[0] + v[0]*m_pmesh->cs;
|
|
// const float z = orig[1] + v[1]*m_pmesh->ch;
|
|
// const float y = orig[2] + v[2]*m_pmesh->cs;
|
|
|
|
// pol->add(K::GnuplotCoordinate3(x, y, z, K::GnuplotCoordinateSystem::FIRST));
|
|
|
|
// }
|
|
|
|
// un-swap Y/Z
|
|
const unsigned short* v0 = &m_pmesh->verts[p[0]*3];
|
|
const Point3 p0(orig[0] + v0[0]*m_pmesh->cs, orig[2] + v0[2]*m_pmesh->cs, orig[1] + v0[1]*m_pmesh->ch);
|
|
|
|
const unsigned short* v1 = &m_pmesh->verts[p[1]*3];
|
|
const Point3 p1(orig[0] + v1[0]*m_pmesh->cs, orig[2] + v1[2]*m_pmesh->cs, orig[1] + v1[1]*m_pmesh->ch);
|
|
|
|
const unsigned short* v2 = &m_pmesh->verts[p[2]*3];
|
|
const Point3 p2(orig[0] + v2[0]*m_pmesh->cs, orig[2] + v2[2]*m_pmesh->cs, orig[1] + v2[1]*m_pmesh->ch);
|
|
|
|
dst->add(p0,p1,p2,type);
|
|
|
|
}
|
|
|
|
// now, connect neighbors
|
|
for (int i = 0; i < m_pmesh->npolys; ++i) {
|
|
|
|
const unsigned short* p = &m_pmesh->polys[i*m_pmesh->nvp*2];
|
|
|
|
// find all neighbor polygons using their index
|
|
for (int j = 0; j < m_pmesh->nvp; ++j) {
|
|
int jj = j + m_pmesh->nvp; // offset, 2nd half of the array [size: 2*nvp]
|
|
if (p[jj] == RC_MESH_NULL_IDX) {continue;} // no neighbor for the current edge!
|
|
const int idx = p[jj];
|
|
dst->connectUniDir(i, idx);
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
/** as line-obstacles have a thickness, we need 4 lines for the intersection test! */
|
|
Floorplan::Polygon2 getPolygon(const Floorplan::FloorObstacleLine* line) const {
|
|
const float thickness_m = std::max(line->thickness_m, settings.maxQuality_m); // wall's thickness (make thin walls big enough to be detected)
|
|
const Point2 dir = (line->to - line->from); // obstacle's direction
|
|
const Point2 perp = dir.perpendicular().normalized(); // perpendicular direction (90 degree)
|
|
const Point2 p1 = line->from + perp * thickness_m/2; // start-up
|
|
const Point2 p2 = line->from - perp * thickness_m/2; // start-down
|
|
const Point2 p3 = line->to + perp * thickness_m/2; // end-up
|
|
const Point2 p4 = line->to - perp * thickness_m/2; // end-down
|
|
Floorplan::Polygon2 res;
|
|
res.points.push_back(p1);
|
|
res.points.push_back(p2);
|
|
res.points.push_back(p4);
|
|
res.points.push_back(p3);
|
|
return res;
|
|
}
|
|
|
|
/** create all polygons describing the walls floor outline, excluding doors */
|
|
std::vector<Floorplan::Polygon2> getPolygons(const Floorplan::FloorObstacleWall* wall, bool invert) const {
|
|
|
|
// invert = true -> door polygons
|
|
// invert = false -> wall polygons
|
|
|
|
const float thickness_m = std::max(wall->thickness_m, settings.maxQuality_m); // wall's thickness (make thin walls big enough to be detected)
|
|
|
|
// get all points along the wall start, doorstart,doorend, doorstart,doorend, .., end
|
|
std::vector<Point2> pts;
|
|
pts.push_back(wall->from);
|
|
pts.push_back(wall->to);
|
|
for (const Floorplan::FloorObstacleWallDoor* door : wall->doors) {
|
|
pts.push_back(door->getStart(wall));
|
|
pts.push_back(door->getEnd(wall));
|
|
}
|
|
|
|
// sort all points by distance from start (correct on-off-on-off-on order)
|
|
auto comp = [wall] (const Point2 p1, const Point2 p2) {
|
|
return wall->from.getDistance(p1) < wall->from.getDistance(p2);
|
|
};
|
|
std::sort(pts.begin(), pts.end(), comp);
|
|
|
|
std::vector<Floorplan::Polygon2> polys;
|
|
|
|
const size_t start = (invert) ? (1) : (0);
|
|
|
|
// from wall segment to wall segment, excluding doors
|
|
for (size_t i = start; i < pts.size()-start; i += 2) {
|
|
|
|
const Point2 ps = pts[i+0];
|
|
const Point2 pe = pts[i+1];
|
|
|
|
const Point2 dir = (pe - ps); // part's direction
|
|
const Point2 perp = dir.perpendicular().normalized(); // perpendicular direction (90 degree)
|
|
const Point2 p1 = ps + perp * thickness_m/2; // start-up
|
|
const Point2 p2 = ps - perp * thickness_m/2; // start-down
|
|
const Point2 p3 = pe + perp * thickness_m/2; // end-up
|
|
const Point2 p4 = pe - perp * thickness_m/2; // end-down
|
|
Floorplan::Polygon2 res;
|
|
res.points.push_back(p1);
|
|
res.points.push_back(p2);
|
|
res.points.push_back(p4);
|
|
res.points.push_back(p3);
|
|
polys.push_back(res);
|
|
|
|
}
|
|
|
|
return polys;
|
|
|
|
}
|
|
|
|
/** convert the given 3D object to a polygon outline */
|
|
Floorplan::Polygon2 getPolygon(const Floorplan::FloorObstacleObject* obj) const {
|
|
|
|
Floorplan::Polygon2 res;
|
|
|
|
// fetch object from pool
|
|
const Floorplan3D::Obstacle3D obs = Floorplan3D::OBJPool::get().getObject(obj->file).scaled(obj->scale).rotated_deg(obj->rot).translated(obj->pos);
|
|
|
|
// construct 2D convex hull
|
|
res.points = ConvexHull2::get(obs.getPoints2D());
|
|
return res;
|
|
|
|
}
|
|
|
|
/** as line-obstacles have a thickness, we need 4 lines for the intersection test! */
|
|
Floorplan::Polygon2 getPolygon(const Floorplan::FloorObstacleDoor* door) const {
|
|
const float thickness_m = std::max(0.3f, settings.maxQuality_m); // wall's thickness (make thin walls big enough to be detected)
|
|
const Point2 dir = (door->to - door->from); // obstacle's direction
|
|
const Point2 perp = dir.perpendicular().normalized(); // perpendicular direction (90 degree)
|
|
const Point2 p1 = door->from + perp * thickness_m/2; // start-up
|
|
const Point2 p2 = door->from - perp * thickness_m/2; // start-down
|
|
const Point2 p3 = door->to + perp * thickness_m/2; // end-up
|
|
const Point2 p4 = door->to - perp * thickness_m/2; // end-down
|
|
Floorplan::Polygon2 res;
|
|
res.points.push_back(p1);
|
|
res.points.push_back(p2);
|
|
res.points.push_back(p4);
|
|
res.points.push_back(p3);
|
|
return res;
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
#endif
|