This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
Indoor/grid/factory/GridFactory.h
FrankE 382a046df1 new walker (control+path)
added new sanity checks
fixed minor errors
added corresponding test-cases
added moving-median
2016-02-05 20:18:48 +01:00

404 lines
10 KiB
C++
Executable File

#ifndef GRIDFACTORY_H
#define GRIDFACTORY_H
#include <string>
#include <unordered_set>
#include "../../floorplan/Floor.h"
#include "../../floorplan/Stairs.h"
#include "../../floorplan/PlatformStair.h"
#include "../../geo/Units.h"
#include "../GridNodeBBox.h"
#include "../Grid.h"
#include "../../misc/Debug.h"
template <typename T> class GridFactory {
/** logging name */
static constexpr const char* name = "GridFac";
private:
/** the grid to build into */
Grid<T>& grid;
public:
/** ctor with the grid to fill */
GridFactory(Grid<T>& grid) : grid(grid) {;}
/** add the given floor at the provided height (in cm) */
void addFloor(const Floor& floor, const float z_cm) {
Log::add(name, "adding floor at height " + std::to_string(z_cm), false);
Log::tick();
const int gridSize_cm = grid.getGridSize_cm();
// build grid-points
for(int x_cm = 0; x_cm < floor.getWidth_cm(); x_cm += gridSize_cm) {
for (int y_cm = 0; y_cm < floor.getDepth_cm(); y_cm += gridSize_cm) {
// check intersection with the floorplan
const GridNodeBBox bbox(GridPoint(x_cm, y_cm, z_cm), gridSize_cm);
if (intersects(bbox, floor)) {continue;}
// add to the grid
grid.add(T(x_cm, y_cm, z_cm));
}
}
Log::tock();
connectAdjacent(z_cm);
}
/** connect all neighboring nodes part of the given index-vector */
void connectAdjacent(const std::vector<int>& indices) {
for (const int idx : indices) {
// connect the node with its neighbors
connectAdjacent(grid[idx]);
}
}
/** connect all neighboring nodes located on the given height-plane */
void connectAdjacent(const float z_cm) {
Log::add(name, "connecting all adjacent nodes at height " + std::to_string(z_cm), false);
Log::tick();
// connect adjacent grid-points
for (T& n1 : grid) {
// not the floor we are looking for? -> skip (ugly.. slow(er))
if (n1.z_cm != z_cm) {continue;}
// connect the node with its neighbors
connectAdjacent(n1);
}
Log::tock();
}
/** connect the given node with its neighbors */
void connectAdjacent(T& n1) {
const int gridSize_cm = grid.getGridSize_cm();
// square around the node
for (int x = -gridSize_cm; x <= gridSize_cm; x += gridSize_cm) {
for (int y = -gridSize_cm; y <= gridSize_cm; y += gridSize_cm) {
// skip the center (node itself)
if ((x == y) && (x == 0)) {continue;}
// position of the potential neighbor
const int ox = n1.x_cm + x;
const int oy = n1.y_cm + y;
const GridPoint p(ox, oy, n1.z_cm);
// does the grid contain the potential neighbor?
const T* n2 = grid.getNodePtrFor(p);
if (n2 != nullptr) {
grid.connectUniDir(n1, *n2); // UNI-dir connection as EACH node is processed!
}
}
}
}
float align(const float val) {
const float gridSize_cm = grid.getGridSize_cm();
return std::round(val/gridSize_cm) * gridSize_cm;
}
/** shrink the given bbox to be grid-aligned */
BBox2 shrinkAlign(const BBox2& bb) {
const float gridSize_cm = grid.getGridSize_cm();
Point2 p1 = bb.getMin();
Point2 p2 = bb.getMax();
p1.x = std::ceil(p1.x/gridSize_cm)*gridSize_cm;
p1.y = std::ceil(p1.y/gridSize_cm)*gridSize_cm;
p2.x = std::floor(p2.x/gridSize_cm)*gridSize_cm;
p2.y = std::floor(p2.y/gridSize_cm)*gridSize_cm;
BBox2 res; res.add(p1); res.add(p2); return res;
}
/** add a new platform-stair between the two given floors */
void buildPlatformStair(const PlatformStair& s, const float z1_cm, const float z2_cm) {
const float zCenter_cm = align((z2_cm + z1_cm) / 2);
std::vector<int> indices;
// add the platform in the middle
BBox2 bb = shrinkAlign(s.platform);
const int gridSize_cm = grid.getGridSize_cm();
for (int x_cm = bb.getMin().x; x_cm <= bb.getMax().x; x_cm += gridSize_cm) {
for (int y_cm = bb.getMin().y; y_cm <= bb.getMax().y; y_cm += gridSize_cm) {
int idx = grid.add(T(x_cm, y_cm, zCenter_cm));
indices.push_back(idx);
}
}
// connect the plattform in the middle
connectAdjacent(indices);
// TODO: interconnect (x-y) the stair lines???
buildStair(s.s1, z1_cm, zCenter_cm);
buildStair(s.s2, z2_cm, zCenter_cm);
}
void addStairs(const Stairs& stairs, const float z1_cm, const float z2_cm) {
Log::add(name, "adding stairs between " + std::to_string(z1_cm) + " and " + std::to_string(z2_cm), false);
Log::tick();
for (const Stair& s : stairs) { buildStair(s, z1_cm, z2_cm); }
Log::tock();
}
void buildStair(const Stair& s, const float z1_cm, const float z2_cm) {
// potential starting-point for the stair
for (T& n : grid) {
// node lies on the stair's starting edge?
if (n.z_cm == z1_cm && grid.getBBox(n).intersects(s.start)) {
// construct end-point by using the stair's direction
const Point3 end = Point3(n.x_cm, n.y_cm, z2_cm) + Point3(s.dir.x, s.dir.y, 0);
GridPoint gp(end.x, end.y, end.z);
// does such and end-point exist within the grid? -> construct stair-line
if (grid.hasNodeFor(gp)) {
T& n2 = (T&) grid.getNodeFor(gp);
buildStairLine(n, n2);
}
}
}
}
/** build a stair (z-transition) from n1 to n2 */
void buildStairLine(T& _n1, T& _n2) {
// half the grid size = small steps
const int gridSize_cm = grid.getGridSize_cm();// / std::sqrt(2);
// local copies, needed for std::swap to work
T n1 = _n1; T n2 = _n2;
// ensure we work from lower to upper levels
if (n2.z_cm < n1.z_cm) { std::swap(n1, n2); }
const float zDiff = n2.z_cm - n1.z_cm;
const float xDiff = n2.x_cm - n1.x_cm;
const float yDiff = n2.y_cm - n1.y_cm;
int idx1 = n1.getIdx(); // starting node
int idx2 = -1; // next node
const int idx3 = n2.getIdx(); // final node
// move upards in gridSize steps
for (int _z = gridSize_cm; _z < zDiff - gridSize_cm; _z+= gridSize_cm) {
// calculate the percentage of reached upwards-distance
const float percent = _z/zDiff;
// adjust (x,y) accordingly (interpolate)
int x = n1.x_cm + xDiff * percent;
int y = n1.y_cm + yDiff * percent;
int z = n1.z_cm + _z;
// snap (x,y) to the grid???
//x = std::round(x / gridSize_cm) * gridSize_cm;
//y = std::round(y / gridSize_cm) * gridSize_cm;
// create a new node add it to the grid, and connect it with the previous one
idx2 = grid.addUnaligned(T(x,y,z));
grid.connectBiDir(idx1, idx2);
idx1 = idx2;
}
// add the last segment
Assert::isTrue(idx2 != -1, "strange stair issue?!");
grid.connectBiDir(idx2, idx3);
}
/** add the inverted version of the given z-layer */
void addInverted(const Grid<T>& gIn, const float z_cm) {
// get the original grid's bbox
BBox3 bb = gIn.getBBox();
const int gridSize_cm = grid.getGridSize_cm();
// build new grid-points
for(int x_cm = bb.getMin().x; x_cm <= bb.getMax().x; x_cm += gridSize_cm) {
for (int y_cm = bb.getMin().y; y_cm < bb.getMax().y; y_cm += gridSize_cm) {
// does the input-grid contain such a point?
GridPoint gp(x_cm, y_cm, z_cm);
if (gIn.hasNodeFor(gp)) {continue;}
// add to the grid
grid.add(T(x_cm, y_cm, z_cm));
}
}
}
// TODO: how to determine the starting index?!
// IDEAS: find all segments:
// start at a random point, add all connected points to the set
// start at a NEW random point ( not part of the already processed points), add connected points to a new set
// repeat until all points processed
// how to handle multiple floor layers?!?!
// run after all floors AND staircases were added??
// OR: random start, check segment size, < 50% of all nodes? start again
void removeIsolated() {
Log::add(name, "searching for isolated nodes");
// get largest connected region
std::unordered_set<int> set;
do {
const int idxStart = rand() % grid.getNumNodes();
set.clear();
Log::add(name, "getting connected region starting at " + (std::string) grid[idxStart]);
getConnected(grid[idxStart], set);
Log::add(name, "region size is " + std::to_string(set.size()) + " nodes");
} while (set.size() < 0.5 * grid.getNumNodes());
// remove all other
Log::add(name, "removing the isolated nodes");
for (int i = 0; i < grid.getNumNodes(); ++i) {
if (set.find(i) == set.end()) {grid.remove(i);}
}
// clean the grid
grid.cleanup();
}
/** remove all nodes not connected to n1 */
void removeIsolated(T& n1) {
// get the connected region around n1
Log::add(name, "getting set of all nodes connected to " + (std::string) n1, false);
Log::tick();
std::unordered_set<int> set;
getConnected(n1, set);
Log::tock();
// remove all other
Log::add(name, "removing all nodes NOT connected to " + (std::string) n1, false);
Log::tick();
for (T& n2 : grid) {
if (set.find(n2.getIdx()) == set.end()) {grid.remove(n2);}
}
Log::tock();
// clean the grid (physically delete the removed nodes)
grid.cleanup();
}
private:
/** recursively get all connected nodes and add them to the set */
void getConnected(T& n1, std::unordered_set<int>& visited) {
std::unordered_set<int> toVisit;
toVisit.insert(n1.getIdx());
// run while there are new nodes to visit
while(!toVisit.empty()) {
// get the next node
int nextIdx = *toVisit.begin();
toVisit.erase(nextIdx);
visited.insert(nextIdx);
T& next = grid[nextIdx];
// get all his (unprocessed) neighbors and add them to the region
for (const T& n2 : grid.neighbors(next)) {
if (visited.find(n2.getIdx()) == visited.end()) {
toVisit.insert(n2.getIdx());
}
}
}
}
// /** recursively get all connected nodes and add them to the set */
// void getConnected(const int idx, std::unordered_set<int>& set) {
// // get the node behind idx
// const T& n1 = (T&) grid[idx];
// // add him to the current region
// set.insert(n1.getIdx());
// // get all his (unprocessed) neighbors and add them to the region
// for (const T& n2 : grid.neighbors(n1)) {
// if (set.find(n2.getIdx()) == set.end()) {
// getConnected(n2.getIdx(), set);
// }
// }
// }
// /** recursively get all connected nodes and add them to the set */
// void getConnected(const T& n1, std::unordered_set<int>& set) {
// // add him to the current region
// set.insert(n1.getIdx());
// // get all his (unprocessed) neighbors and add them to the region
// for (const T& n2 : grid.neighbors(n1)) {
// if (set.find(n2.getIdx()) == set.end()) {
// getConnected(n2, set);
// }
// }
// }
private:
/** does the bbox intersect with any of the floor's walls? */
static inline bool intersects(const GridNodeBBox& bbox, const Floor& floor) {
for (const Line2& l : floor.getObstacles()) {
if (bbox.intersects(l)) {return true;}
}
return false;
}
};
#endif // GRIDFACTORY_H