This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
Indoor/math/dsp/fir/Complex.h
frank 2dee085131 added IIR stuff
worked on StepDetection
2018-07-17 09:53:30 +02:00

215 lines
5.7 KiB
C++

#ifndef FIRCOMPLEX_H
#define FIRCOMPLEX_H
#include <vector>
#include <complex>
#include "../../../Assertions.h"
/**
* FIR filter using complex convolution
*/
class FIRComplex {
/** signal's sample-rate */
int sRate_hz;
/** the created convolution kernel */
std::vector<std::complex<float>> kernel;
/** incoming data */
std::vector<std::complex<float>> data;
public:
/** ctor with signal's sample-rate */
FIRComplex(const int sRate_hz) : sRate_hz(sRate_hz) {
;
}
/** get the internal kernel */
const std::vector<std::complex<float>> getKernel() const {
return kernel;
}
/** configure as lowpass with the given cutoff and 2*size+1 */
void lowPass(const int cutOff_hz, const int size) {
this->kernel = getLowpass(cutOff_hz, sRate_hz, size);
}
/** shift the constructed filter by the given hz-rate */
void shiftBy(const int shift_hz) {
shiftKernel(shift_hz, sRate_hz);
}
/** filter the given incoming real data */
std::vector<std::complex<float>> append(const std::vector<float>& newData) {
// append to local buffer (as we need some history)
//data.insert(data.end(), newData.begin(), newData.end());
for (const float f : newData) {
data.push_back(std::complex<float>(f, 0)); // real = value, imag = 0;
}
return processLocalBuffer();
}
/** filter the given incoming complex data */
std::vector<std::complex<float>> append(const std::vector<std::complex<float>>& newData) {
// append to local buffer (as we need some history)
data.insert(data.end(), newData.begin(), newData.end());
return processLocalBuffer();
}
/** filter the given incoming real value */
std::complex<float> append(const float val) {
data.push_back(std::complex<float>(val, 0));
auto tmp = processLocalBuffer();
if (tmp.size() == 0) {return std::complex<float>(NAN, NAN);}
if (tmp.size() == 1) {return tmp[0];}
throw Exception("FIRComplex:: detected invalid result");
}
/** filter the given incoming real value */
std::complex<float> append(const std::complex<float> c) {
data.push_back(c);
auto tmp = processLocalBuffer();
if (tmp.size() == 0) {return std::complex<float>(NAN, NAN);}
if (tmp.size() == 1) {return tmp[0];}
throw Exception("FIRComplex:: detected invalid result");
}
void dumpKernel(const std::string& file, const std::string& varName) {
std::ofstream out(file);
out << "# name: " << varName << "\n";
out << "# type: complex matrix\n";
out << "# rows: " << kernel.size() << "\n";
out << "# columns: 1\n";
for (const std::complex<float> c : kernel) {
out << "(" << c.real() << "," << c.imag() << ")" << "\n";
}
out.close();
}
private:
std::vector<std::complex<float>> processLocalBuffer() {
// sanity check
Assert::isNot0(kernel.size(), "FIRComplex:: kernel not yet configured!");
// number of processable elements (due to filter size)
const int processable = data.size() - kernel.size() + 1 - kernel.size()/2;
// nothing to-do?
if (processable <= 0) {return std::vector<std::complex<float>>();}
// result-vector
std::vector<std::complex<float>> res;
res.resize(processable);
// fire
convolve(data.data(), res.data(), processable);
// drop processed elements from the local buffer
data.erase(data.begin(), data.begin() + processable);
// done
return res;
}
template <typename T> void convolve(const std::complex<float>* src, T* dst, const size_t cnt) {
const size_t ks = kernel.size();
for (size_t i = 0; i < cnt; ++i) {
T t = T();
for (size_t j = 0; j < ks; ++j) {
t += src[j+i] * kernel[j];
}
if (t != t) {throw std::runtime_error("detected NaN");}
dst[i] = t;
}
}
// template <typename T> void convolve(const float* src, T* dst, const size_t cnt) {
// const size_t ks = kernel.size();
// for (size_t i = 0; i < cnt; ++i) {
// T t = T();
// for (size_t j = 0; j < ks; ++j) {
// t += std::complex<float>(src[j+i], 0) * kernel[j];
// }
// if (t != t) {throw std::runtime_error("detected NaN");}
// dst[i] = t;
// }
// }
/** get a value from the hamming window */
static double winHamming(const double t, const double size) {
return 0.54 - 0.46 * std::cos(2 * M_PI * t / size);
}
/** frequency shift the kernel by multiplying with a frequency */
void shiftKernel(const int shift_hz, const int sRate_hz) {
for (size_t i = 0; i < kernel.size(); ++i) {
const float t = (float) i / (float) sRate_hz;
const float real = std::cos(t * 2 * M_PI * shift_hz);
const float imag = std::sin(t * 2 * M_PI * shift_hz);
kernel[i] = kernel[i] * std::complex<float>(real, imag);
}
}
// https://dsp.stackexchange.com/questions/4693/fir-filter-gain
/** normalize using the DC-part of the kernel */
static void normalizeDC(std::vector<std::complex<float>>& kernel) {
std::complex<float> sum;
for (auto f : kernel) {sum += f;}
for (auto& f : kernel) {f /= sum;}
}
// https://dsp.stackexchange.com/questions/4693/fir-filter-gain
static void normalizeAC(std::vector<std::complex<float>>& kernel, const float freq) {
throw std::runtime_error("TODO");
}
/** build a lowpass filter kernel */
static std::vector<std::complex<float>> getLowpass(const int cutOff, const int sRate, const int n) {
std::vector<std::complex<float>> kernel;
for (int i = -n; i <= +n; ++i) {
const double t = (double) i / (double) sRate;
const double tmp = 2 * M_PI * cutOff * t;
const double val = (tmp == 0) ? (1) : (std::sin(tmp) / tmp);
const double win = winHamming(i+n, n*2);
const double res = val * win;// * 0.5f; // why 0.5?
if (res != res) {throw std::runtime_error("detected NaN");}
kernel.push_back( std::complex<float>(res, 0) );
}
// important!!! normalize so the original frequencies stay at 0dB
normalizeDC(kernel); // dc works for low-pass filter only as this one contains DC!
return kernel;
}
};
#endif // FIRCOMPLEX_H