This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
Indoor/math/dsp/fir/RealFactory.h
k-a-z-u 039f9c4cee refactored FIR filters
- real and complex variant
adjusted StepDetection2
2018-07-03 10:56:30 +02:00

134 lines
2.8 KiB
C++

#ifndef FIRREALFACTORY_H
#define FIRREALFACTORY_H
#include "Real.h"
namespace FIR {
namespace Real {
class Factory {
Kernel kernel;
float sRate_hz;
public:
/** ctor */
Factory(float sRate_hz) : sRate_hz(sRate_hz) {
;
}
/** frequency shift the kernel by multiplying with a frequency */
void shift(const float shift_hz) {
for (size_t i = 0; i < kernel.size(); ++i) {
const float t = (float) i / (float) sRate_hz;
const float real = std::sin(t * 2 * M_PI * shift_hz);
kernel[i] = kernel[i] * real;
}
}
/** create a lowpass filte kernel */
void lowpass(const float cutOff_hz, const int n = 50) {
kernel.clear();
for (int i = -n; i <= +n; ++i) {
const double t = (double) i / (double) sRate_hz;
const double tmp = 2 * M_PI * cutOff_hz * t;
const double val = (tmp == 0) ? (1) : (std::sin(tmp) / tmp);
const double res = val;// * 0.5f; // why 0.5?
if (res != res) {throw std::runtime_error("detected NaN");}
kernel.push_back(res);
}
}
/** apply hamming window to the filter */
void applyWindowHamming() {
const int n = (kernel.size()-1)/2;
int i = -n;
for (float& f : kernel) {
f *= winHamming(i+n, n*2);
++i;
}
}
// https://dsp.stackexchange.com/questions/4693/fir-filter-gain
/** normalize using the DC-part of the kernel */
void normalizeDC() {
float sum = 0;
for (auto f : kernel) {sum += f;}
for (auto& f : kernel) {f /= sum;}
}
// https://dsp.stackexchange.com/questions/4693/fir-filter-gain
void normalizeAC(const float freq_hz) {
const int n = (kernel.size()-1)/2;
int i = -n;
float sum = 0;
for (float f : kernel) {
const double t = (double) i / (double) sRate_hz;
const double r = 2 * M_PI * freq_hz * t;
const double s = std::sin(r);
sum += f * s;
++i;
}
for (auto& f : kernel) {f /= sum;}
}
Kernel getLowpass(const float cutOff_hz, const int n) {
lowpass(cutOff_hz, n);
applyWindowHamming();
normalizeDC();
return kernel;
}
Kernel getBandpass(const float width_hz, const float center_hz, const int n) {
lowpass(width_hz/2, n);
applyWindowHamming();
//normalizeDC();
shift(center_hz);
normalizeAC(center_hz);
return kernel;
}
void dumpKernel(const std::string& file, const std::string& varName) {
std::ofstream out(file);
out << "# name: " << varName << "\n";
out << "# type: matrix\n";
out << "# rows: " << kernel.size() << "\n";
out << "# columns: 1\n";
for (const float f : kernel) {
out << f << "\n";
}
out.close();
}
private:
/** get a value from the hamming window */
static double winHamming(const double t, const double size) {
return 0.54 - 0.46 * std::cos(2 * M_PI * t / size);
}
};
}
}
#endif // FIRREALFACTORY_H