This repository has been archived on 2020-04-08. You can view files and clone it, but cannot push or open issues or pull requests.
Files
Indoor/tests/sensors/radio/TestWiFiOptimizer.cpp
kazu 06e0e0a5aa fixed some potential issues with MAC addresses
added corresponding test-cases
switched to newer version of tinyxml due to some issues
adjusted affected code-parts accordingly
for better re-use, moved ceiling-calculation to a new class
some minor fixes
new helper methods
worked on wifi-opt
2017-03-20 11:19:57 +01:00

84 lines
2.7 KiB
C++

#ifdef WITH_TESTS
#include "../../Tests.h"
#include "../../../sensors/radio/setup/WiFiOptimizerLogDistCeiling.h"
#include "../../../sensors/radio/setup/WiFiFingerprint.h"
#include "../../../misc/Debug.h"
#include <random>
/**
* test the wifi-optimizer by generating synthetic fingerprints and optimizing parameters from them
*/
TEST(WiFiOptimizer, optimize) {
const VAPGrouper vg(VAPGrouper::Mode::DISABLED, VAPGrouper::Aggregation::AVERAGE);
const MACAddress mac1("00:00:00:00:00:01");
const MACAddress mac2("00:00:00:00:00:02");
const Point3 pos1(10, 12, 5);
const Point3 pos2(20, -10, 2);
// building with one floor at 3.0 meters
Floorplan::IndoorMap map;
Floorplan::Floor floor1; floor1.atHeight = 3.0f;
Floorplan::FloorOutlinePolygon poly1; poly1.poly.points.push_back(Point2(-30, -30)); poly1.poly.points.push_back(Point2(+30, +30));
floor1.outline.push_back(&poly1);
map.floors.push_back(&floor1);
// add the two APs to the model
WiFiModelLogDistCeiling mdl(&map);
mdl.addAP(mac1, WiFiModelLogDistCeiling::APEntry(pos1, -40, 2, -4));
mdl.addAP(mac2, WiFiModelLogDistCeiling::APEntry(pos2, -40, 2, -4));
// generate some (synthetic) fingerprints
std::minstd_rand gen;
std::vector<WiFiFingerprint> fingerprints;
for (int i = 0; i < 50; ++i) {
std::uniform_real_distribution<float> distX(-30, +30);
std::uniform_real_distribution<float> distY(-30, +30);
std::uniform_real_distribution<float> distZ( -9, +9);
// get a random position and calculate the model RSSIs
const Point3 randomPt(distX(gen), distY(gen), distZ(gen));
const float rssi1 = mdl.getRSSI(mac1, randomPt);
const float rssi2 = mdl.getRSSI(mac2, randomPt);
// construct a corresponding synthetic fingerprint
WiFiFingerprint fp(randomPt);
fp.measurements.entries.push_back(WiFiMeasurement(AccessPoint(mac1), rssi1));
fp.measurements.entries.push_back(WiFiMeasurement(AccessPoint(mac2), rssi2));
fingerprints.push_back(fp);
}
WiFiOptimizer::LogDistCeiling opt(&map, vg);
for (const WiFiFingerprint& fp : fingerprints) {
opt.addFingerprint(fp);
}
ASSERT_EQ(2, opt.getAllMACs().size());
WiFiOptimizer::LogDistCeiling::Stats errRes;
const WiFiOptimizer::LogDistCeiling::APParams params1 = opt.optimize(mac1, errRes);
ASSERT_TRUE(errRes.error_db < 0.1);
ASSERT_NEAR(0, pos1.getDistance(params1.getPos()), 0.4); // apx position estimation
ASSERT_NEAR(-40, params1.txp, 1.0);
ASSERT_NEAR(2, params1.exp, 0.1);
ASSERT_NEAR(-4, params1.waf, 0.5);
const WiFiOptimizer::LogDistCeiling::APParams params2 = opt.optimize(mac2, errRes);
ASSERT_TRUE(errRes.error_db < 0.1);
ASSERT_NEAR(0, pos2.getDistance(params2.getPos()), 0.4); // apx position estimation
ASSERT_NEAR(-40, params1.txp, 1.0);
ASSERT_NEAR(2, params2.exp, 0.1);
ASSERT_NEAR(-4, params2.waf, 0.5);
}
#endif