#ifndef NAVMESHTRIANGLE_H #define NAVMESHTRIANGLE_H #include "../geo/Point3.h" #include "../geo/Point2.h" namespace NM { /** * represents one triangle within the NavMesh * each Triangle has up to 3 neighbors (one per edge) * * for performance enhancements, * some memeber attributes are pre-calculated once */ class NavMeshTriangle { private: template friend class NavMesh; const Point3 p1; const Point3 p2; const Point3 p3; const uint8_t type; NavMeshTriangle* _neighbors[3]; int _numNeighbors; private: // precalculated stuff Point2 v0; Point2 v1; float dot00; float dot01; float dot11; double invDenom; float area; float minZ; float maxZ; const Point3 center; const Point3 v12; const Point3 v13; public: /** ctor */ NavMeshTriangle(const Point3 p1, const Point3 p2, const Point3 p3, const uint8_t type) : p1(p1), p2(p2), p3(p3), type(type), _neighbors(), _numNeighbors(0), center((p1+p2+p3)/3), v12(p2-p1), v13(p3-p1) { precompute(); } /** get the triangle's type */ uint8_t getType() const {return type;} Point3 getP1() const {return p1;} Point3 getP2() const {return p2;} Point3 getP3() const {return p3;} /** get the distance between the given point and the triangle using approximate tests */ float getDistanceApx(const Point3 pt) const { // const float d1 = pt.getDistance(p1); // const float d2 = pt.getDistance(p2); // const float d3 = pt.getDistance(p3); // const float d4 = pt.getDistance(center); // const float d5 = pt.getDistance((p1-p2)/2); // const float d6 = pt.getDistance((p2-p3)/2); // const float d7 = pt.getDistance((p3-p1)/2); // return std::min(d1, std::min(d2, std::min(d3, std::min(d4, std::min(d5, std::min(d6,d7)))))); // const float d1 = pt.getDistance(p1); // const float d2 = pt.getDistance(p2); // const float d3 = pt.getDistance(p3); // const float d4 = pt.getDistance(center); // return std::min(d1, std::min(d2, std::min(d3,d4))); float bestD = 99999; Point3 bestP; Point3 dir12 = p2-p1; Point3 dir13 = p3-p1; Point3 dir23 = p3-p2; for (float f = 0; f < 1; f += 0.05f) { const Point3 pos1 = p1 + dir12 * f; const float dist1 = pos1.getDistance(pt); const Point3 pos2 = p1 + dir13 * f; const float dist2 = pos2.getDistance(pt); const Point3 pos3 = p2 + dir23 * f; const float dist3 = pos3.getDistance(pt); if (dist1 < bestD) {bestP = pos1; bestD = dist1;} if (dist2 < bestD) {bestP = pos2; bestD = dist2;} if (dist3 < bestD) {bestP = pos3; bestD = dist3;} } return bestD; } bool operator == (const NavMeshTriangle& o) const { return (p1 == o.p1) && (p2 == o.p2) && (p3 == o.p3); } /** is the triangle plain? (same Z for all points) */ bool isPlain() const { const float d1 = std::abs(p1.z - p2.z); const float d2 = std::abs(p2.z - p3.z); return (d1 < 0.1) && (d2 < 0.1); } const NavMeshTriangle* const* begin() const {return &_neighbors[0];} const NavMeshTriangle* const* end() const {return &_neighbors[_numNeighbors];} Point3 getPoint(const float u, const float v) const { return p1 + (v12*u) + (v13*v); } /** does the triangle contain the given 3D point? */ bool contains(const Point3 p) const { return (minZ <= p.z) && (maxZ >= p.z) && contains(p.xy()); } /** does the triangle contain the given 2D point? */ bool contains(const Point2 p) const { const Point2 v2 = p - p1.xy(); // Compute dot products float dot02 = dot(v0, v2); float dot12 = dot(v1, v2); // Compute barycentric coordinates float u = (dot11 * dot02 - dot01 * dot12) * invDenom; float v = (dot00 * dot12 - dot01 * dot02) * invDenom; // Check if point is in triangle return (u >= 0) && (v >= 0) && (u + v <= 1); } /** estimate the correct z-value for the given 2D point */ Point3 toPoint3(const Point2 p) const { const Point2 v2 = p - p1.xy(); // Compute dot products float dot02 = dot(v0, v2); float dot12 = dot(v1, v2); // Compute barycentric coordinates float u = (dot11 * dot02 - dot01 * dot12) * invDenom; float v = (dot00 * dot12 - dot01 * dot02) * invDenom; const Point3 res = getPoint(v,u); Assert::isNear(res.x, p.x, 1.0f, "TODO: high difference while mapping from 2D to 3D"); Assert::isNear(res.y, p.y, 1.0f, "TODO: high difference while mapping from 2D to 3D"); //return res; return Point3(p.x, p.y, res.z); // only use the new z, keep input as-is } /** get the triangle's size */ float getArea() const { return area; } /** get the triangle's center-point */ Point3 getCenter() const { return center; } private: /** perform some pre-calculations to speed things up */ void precompute() { #warning "TODO, z buffer" minZ = std::min(p1.z, std::min(p2.z, p3.z)) - 0.15; // TODO the builder does not align on the same height as we did maxZ = std::max(p1.z, std::max(p2.z, p3.z)) + 0.15; // Compute vectors v0 = p3.xy() - p1.xy(); v1 = p2.xy() - p1.xy(); // Compute dot products dot00 = dot(v0, v0); dot01 = dot(v0, v1); dot11 = dot(v1, v1); // Compute barycentric coordinates invDenom = 1.0 / ((double)dot00 * (double)dot11 - (double)dot01 * (double)dot01); const float a = (p2-p1).length(); const float b = (p3-p1).length(); const float c = (p2-p3).length(); const float s = 0.5f * (a+b+c); area = std::sqrt( s * (s-a) * (s-b) * (s-c) ); } protected: void addNeighbor(NavMeshTriangle* o) { Assert::isBetween(_numNeighbors, 0, 3, "number of neighbors out of bounds"); _neighbors[_numNeighbors] = o; ++_numNeighbors; } }; } #endif // NAVMESHTRIANGLE_H