#ifndef GRIDIMPORTANCE_H #define GRIDIMPORTANCE_H #include "../Grid.h" #include "GridFactory.h" #include "../../misc/KNN.h" #include "../../misc/KNNArray.h" #include "../../math/MiniMat2.h" #include "../../misc/Debug.h" #include "../../nav/dijkstra/Dijkstra.h" #include "../../nav/dijkstra/DijkstraPath.h" #include "../../math/distribution/Normal.h" /** * add an importance factor to each node within the grid. * the importance is calculated based on several facts: * - nodes that belong to a door or narrow path are more important * - nodes directly located at walls are less important */ class GridImportance { private: static constexpr const char* name = "GridImp"; public: /** attach importance-factors to the grid */ template void addImportance(Grid& g, const float z_cm) { Log::add(name, "adding importance information to all nodes at height " + std::to_string(z_cm)); // get an inverted version of the grid Grid inv(g.getGridSize_cm()); GridFactory fac(inv); fac.addInverted(g, z_cm); // sanity check Assert::isFalse(inv.getNumNodes() == 0, "inverted grid is empty!"); // construct KNN search KNN, 3> knn(inv); // the number of neighbors to use static constexpr int numNeighbors = 8; // create list of all doors std::vector doors; // process each node for (T& n1 : g) { // skip nodes on other than the requested floor-level if (n1.z_cm != z_cm) {continue;} // get the 10 nearest neighbors and their distance size_t indices[numNeighbors]; float squaredDist[numNeighbors]; float point[3] = {n1.x_cm, n1.y_cm, n1.z_cm}; knn.get(point, numNeighbors, indices, squaredDist); // get the neighbors std::vector neighbors; for (int i = 0; i < numNeighbors; ++i) { neighbors.push_back(&inv[indices[i]]); } n1.imp = 1.0f; n1.imp += getWallImportance( Units::cmToM(std::sqrt(squaredDist[0])) ); //addDoor(n1, neighbors); // is the current node a door? if (isDoor(n1, neighbors)) {doors.push_back(n1);} // favor stairs just like doors if (isStaircase(g, n1)) {doors.push_back(n1);} } KNNArray> knnArrDoors(doors); KNN>, 3> knnDoors(knnArrDoors); // process each node again for (T& n1 : g) { static Distribution::Normal favorDoors(0.0f, 1.0f); // get the distance to the nearest door const float dist_m = Units::cmToM(knnDoors.getNearestDistance( {n1.x_cm, n1.y_cm, n1.z_cm} )); // importance for this node (based on the distance from the next door) //n1.imp += favorDoors.getProbability(dist_m) * 0.30; n1.imp += favorDoors.getProbability(dist_m); } } /** is the given node connected to a staircase? */ template bool isStaircase(Grid& g, T& node) { // if this node has a neighbor with a different z, this is a stair for (T& neighbor : g.neighbors(node)) { if (neighbor.z_cm != node.z_cm) {return true;} } return false; } /** attach importance-factors to the grid */ template void addDistanceToTarget(Grid& g, Dijkstra& d) { //Log::add(name, "adding importance information to all nodes at height " + std::to_string(z_cm)); for (T& node : g) { DijkstraNode* dn = d.getNode(node); if (dn != nullptr) { node.distToTarget = dn->cumWeight / 2000; } } } template void addImportance(Grid& g, const DijkstraNode* start, const DijkstraNode* end) { // routing path DijkstraPath path(end, start); // knn search within the path KNN, 3> knn(path); // update each node from the grid using its distance to the path for (T& n : g) { //const int idx = knn.getNearestIndex( {n.x_cm, n.y_cm, n.z_cm} ); //T& node = g[idx]; const float dist_cm = knn.getNearestDistance( {n.x_cm, n.y_cm, n.z_cm} ); const float dist_m = Units::cmToM(dist_cm); n.impPath = 1.0 + Distribution::Normal::getProbability(0, 1.0, dist_m) * 0.8; } } /** is the given node (and its inverted neighbors) a door? */ template bool isDoor( T& nSrc, std::vector neighbors ) { MiniMat2 m; Point3 center = nSrc.inCentimeter(); // calculate the centroid of the nSrc's nearest-neighbors Point3 centroid(0,0,0); for (const T* n : neighbors) { centroid = centroid + n->inCentimeter(); } centroid /= neighbors.size(); // if nSrc is too far from the centroid, this does not make sense if ((centroid-center).length() > 20) {return false;} // build covariance of the nearest-neighbors int used = 0; for (const T* n : neighbors) { Point3 d = n->inCentimeter() - center; if (d.length() > 100) {continue;} // radius search m.addSquared(d.x, d.y); ++used; } // we need at least two points for the covariance if (used < 2) {return false;} // check eigenvalues MiniMat2::EV ev = m.getEigenvalues(); // ensure e1 > e2 if (ev.e1 < ev.e2) {std::swap(ev.e1, ev.e2);} // door? return ((ev.e2/ev.e1) < 0.15) ; } /** get the importance of the given node depending on its nearest wall */ float getWallImportance(float dist_m) { // avoid sticking too close to walls (unlikely) static Distribution::Normal avoidWalls(0.0, 0.5); // favour walking near walls (likely) static Distribution::Normal stickToWalls(0.9, 0.5); // favour walking far away (likely) static Distribution::Normal farAway(2.2, 0.5); if (dist_m > 2.0) {dist_m = 2.0;} // overall importance // return - avoidWalls.getProbability(dist_m) * 0.30 // avoid walls // + stickToWalls.getProbability(dist_m) * 0.15 // walk near walls // + farAway.getProbability(dist_m) * 0.15 // walk in the middle return - avoidWalls.getProbability(dist_m) // avoid walls //+ stickToWalls.getProbability(dist_m) // walk near walls //+ farAway.getProbability(dist_m) // walk in the middle ; } }; #endif // GRIDIMPORTANCE_H