#ifndef IMPORTANCE_H #define IMPORTANCE_H #include "../../Grid.h" #include "../../../misc/KNN.h" #include "../../../misc/KNNArray.h" #include "../../../math/MiniMat2.h" #include "../../../math/Distributions.h" class Importance { private: static constexpr const char* name = "GridImp"; public: template static void addOutlineNodes(Grid& dst, Grid& src) { for (const T& n : src) { if (n.getNumNeighbors() < 8) { if (!dst.hasNodeFor(n)) { dst.add(n); } } } } /** attach importance-factors to the grid */ template static void addImportance(Grid& g, const float z_cm) { Log::add(name, "adding importance information to all nodes at height " + std::to_string(z_cm)); // get an inverted version of the grid Grid inv(g.getGridSize_cm()); addOutlineNodes(inv, g); //GridFactory fac(inv); //fac.addInverted(g, z_cm); // sanity check Assert::isFalse(inv.getNumNodes() == 0, "inverted grid is empty!"); // construct KNN search KNN, 3> knn(inv); // the number of neighbors to use static constexpr int numNeighbors = 12; // create list of all doors std::vector doors; // process each node for (T& n1 : g) { // is the current node a door? //if (isDoor(n1, neighbors)) {doors.push_back(n1);} // OLD if (n1.getType() == GridNode::TYPE_DOOR) {doors.push_back(n1);} // NEW! // favor stairs just like doors //if (isStaircase(g, n1)) {doors.push_back(n1);} // OLD if (n1.getType() == GridNode::TYPE_STAIR) {doors.push_back(n1);} // NEW } KNNArray> knnArrDoors(doors); KNN>, 3> knnDoors(knnArrDoors); Distribution::Normal favorDoors(0.0f, 0.6f); // process each node again for (T& n1 : g) { // skip nodes on other than the requested floor-level //if (n1.z_cm != z_cm) {continue;} // get the 10 nearest neighbors and their distance size_t indices[numNeighbors]; float squaredDist[numNeighbors]; float point[3] = {n1.x_cm, n1.y_cm, n1.z_cm}; knn.get(point, numNeighbors, indices, squaredDist); // get the neighbors std::vector neighbors; for (int i = 0; i < numNeighbors; ++i) { neighbors.push_back(&inv[indices[i]]); } n1.imp = 1.0f; //if (n1.getType() == GridNode::TYPE_FLOOR) { // get the distance to the nearest door const float distToWall_m = Units::cmToM(std::sqrt(squaredDist[0]) + g.getGridSize_cm()); // get the distance to the nearest door const float distToDoor_m = Units::cmToM(knnDoors.getNearestDistance( {n1.x_cm, n1.y_cm, n1.z_cm} )); n1.imp = 1 + getWallImportance( distToWall_m ) + favorDoors.getProbability(distToDoor_m); //} //addDoor(n1, neighbors); // importance for this node (based on the distance from the next door) //n1.imp += favorDoors.getProbability(dist_m) * 0.30; //n1.imp = (dist_m < 0.2) ? (1) : (0.5); } } /** is the given node connected to a staircase? */ template static bool isStaircase(Grid& g, T& node) { return node.getType() == GridNode::TYPE_STAIR; // // if this node has a neighbor with a different z, this is a stair // for (T& neighbor : g.neighbors(node)) { // if (neighbor.z_cm != node.z_cm) {return true;} // } // return false; } /** is the given node (and its inverted neighbors) a door? */ template static bool isDoor( T& nSrc, std::vector neighbors ) { if (nSrc.getType() != GridNode::TYPE_FLOOR) {return false;} MiniMat2 m1; // MiniMat2 m2; Point3 center = nSrc; // calculate the centroid of the nSrc's nearest-neighbors Point3 centroid(0,0,0); for (const T* n : neighbors) { centroid = centroid + (Point3)*n; } centroid /= neighbors.size(); // if nSrc is too far from the centroid, this does not make sense if ((centroid-center).length() > 40) {return false;} // build covariance of the nearest-neighbors int used = 0; for (const T* n : neighbors) { const Point3 d1 = (Point3)*n - centroid; if (d1.length() > 100) {continue;} // radius search m1.addSquared(d1.x, d1.y); // const Point3 d2 = (Point3)*n - center; // if (d2.length() > 100) {continue;} // radius search // m2.addSquared(d2.x, d2.y); ++used; } // we need at least two points for the covariance if (used < 6) {return false;} // check eigenvalues MiniMat2::EV ev1 = m1.getEigenvalues(); // MiniMat2::EV ev2 = m2.getEigenvalues(); // ensure e1 > e2 if (ev1.e1 < ev1.e2) {std::swap(ev1.e1, ev1.e2);} // if (ev2.e1 < ev2.e2) {std::swap(ev2.e1, ev2.e2);} // door? const float ratio1 = (ev1.e2/ev1.e1); // const float ratio2 = (ev2.e2/ev2.e1); // const float ratio3 = std::max(ratio1, ratio2) / std::min(ratio1, ratio2); return (ratio1 < 0.30 && ratio1 > 0.05) ; } /** get the importance of the given node depending on its nearest wall */ static float getWallImportance(float dist_m) { // avoid sticking too close to walls (unlikely) static Distribution::Normal avoidWalls(0.0, 0.5); // favour walking near walls (likely) static Distribution::Normal stickToWalls(0.9, 0.5); // favour walking far away (likely) static Distribution::Normal farAway(2.2, 0.5); if (dist_m > 2.0) {dist_m = 2.0;} // overall importance // return - avoidWalls.getProbability(dist_m) * 0.30 // avoid walls // + stickToWalls.getProbability(dist_m) * 0.15 // walk near walls // + farAway.getProbability(dist_m) * 0.15 // walk in the middle return - avoidWalls.getProbability(dist_m) // avoid walls //+ stickToWalls.getProbability(dist_m) // walk near walls //+ farAway.getProbability(dist_m) // walk in the middle ; } }; #endif // IMPORTANCE_H