/* * © Copyright 2014 – Urheberrechtshinweis * Alle Rechte vorbehalten / All Rights Reserved * * Programmcode ist urheberrechtlich geschuetzt. * Das Urheberrecht liegt, soweit nicht ausdruecklich anders gekennzeichnet, bei Frank Ebner. * Keine Verwendung ohne explizite Genehmigung. * (vgl. § 106 ff UrhG / § 97 UrhG) */ #ifndef INDOOR_MATH_MATRIX3_H #define INDOOR_MATH_MATRIX3_H #include #include #include "../Assertions.h" class Matrix3 { private: float data[9]; public: Matrix3(std::initializer_list lst) { int idx = 0; for (float f : lst) { data[idx] = f; ++idx; } } static Matrix3 identity() { return Matrix3( {1,0,0, 0,1,0, 0,0,1} ); } static Matrix3 getRotationDeg(const float degX, const float degY, const float degZ) { return getRotationRad(degX/180.0f*M_PI, degY/180.0f*M_PI, degZ/180.0f*M_PI); } static Matrix3 getRotationRad(const float radX, const float radY, const float radZ) { const float g = radX; const float b = radY; const float a = radZ; const float a11 = std::cos(a)*std::cos(b); const float a12 = std::cos(a)*std::sin(b)*std::sin(g)-std::sin(a)*std::cos(g); const float a13 = std::cos(a)*std::sin(b)*std::cos(g)+std::sin(a)*std::sin(g); const float a21 = std::sin(a)*std::cos(b); const float a22 = std::sin(a)*std::sin(b)*std::sin(g)+std::cos(a)*std::cos(g); const float a23 = std::sin(a)*std::sin(b)*std::cos(g)-std::cos(a)*std::sin(g); const float a31 = -std::sin(b); const float a32 = std::cos(b)*std::sin(g); const float a33 = std::cos(b)*std::cos(g); return Matrix3({ a11, a12, a13, a21, a22, a23, a31, a32, a33, }); } static Matrix3 getRotationVec(const float nx, const float ny, const float nz, const float mag) { Assert::isNotNaN(nx, "detected NaN"); Assert::isNotNaN(ny, "detected NaN"); Assert::isNotNaN(nz, "detected NaN"); Assert::isNotNaN(mag, "detected NaN"); const float c = std::cos(mag); const float s = std::sin(mag); return Matrix3({ c+nx*nx*(1-c), nx*ny*(1-c)+nz*s, nx*nz*(1-c)-ny*s, ny*nx*(1-c)-nz*s, c+ny*ny*(1-c), ny*nz*(1-c)+nx*s, nz*nx*(1-c)+ny*s, nz*ny*(1-c)-nx*s, c+nz*nz*(1-c) }); } static Matrix3 getRotationRadX(const float x) { return Matrix3({ 1, 0, 0, 0, cos(x), -sin(x), 0, sin(x), cos(x) }); } static Matrix3 getRotationRadY(const float y) { return Matrix3({ cos(y), 0, sin(y), 0, 1, 0, -sin(y),0, cos(y) }); } static Matrix3 getRotationRadZ(const float z) { return Matrix3({ cos(z), -sin(z), 0, sin(z), cos(z), 0, 0, 0, 1 }); } Matrix3 transposed() const { return Matrix3({ data[0], data[3], data[6], data[1], data[4], data[7], data[2], data[5], data[8] }); } static Matrix3 getTranslation(const float x, const float y) { return Matrix3({ 1, 0, x, 0, 1, y, 0, 0, 1, }); } static Matrix3 getScale(const float x, const float y) { return Matrix3({ x, 0, 0, 0, y, 0, 0, 0, 1, }); } float operator [] (const int idx) const {return data[idx];} bool operator == (const Matrix3& o) const { for (int i = 0; i < 9; ++i) { if (data[i] != o.data[i]) {return false;} } return true; } Matrix3 operator * (const float v) const { return Matrix3({ data[0]*v, data[1]*v, data[2]*v, data[3]*v, data[4]*v, data[5]*v, data[6]*v, data[7]*v, data[8]*v, }); } Matrix3 operator + (const Matrix3& m) const { return Matrix3({ data[0]+m.data[0], data[1]+m.data[1], data[2]+m.data[2], data[3]+m.data[3], data[4]+m.data[4], data[5]+m.data[5], data[6]+m.data[6], data[7]+m.data[7], data[8]+m.data[8], }); } Matrix3 operator * (const Matrix3& m) const { return Matrix3({ data[0]*m.data[0] + data[1]*m.data[3] + data[2]*m.data[6], data[0]*m.data[1] + data[1]*m.data[4] + data[2]*m.data[7], data[0]*m.data[2] + data[1]*m.data[5] + data[2]*m.data[8], data[3]*m.data[0] + data[4]*m.data[3] + data[5]*m.data[6], data[3]*m.data[1] + data[4]*m.data[4] + data[5]*m.data[7], data[3]*m.data[2] + data[4]*m.data[5] + data[5]*m.data[8], data[6]*m.data[0] + data[7]*m.data[3] + data[8]*m.data[6], data[6]*m.data[1] + data[7]*m.data[4] + data[8]*m.data[7], data[6]*m.data[2] + data[7]*m.data[5] + data[8]*m.data[8], }); } }; struct Vector3 { float x,y,z; Vector3() : x(0), y(0), z(0) {;} Vector3(float x, float y, float z) : x(x), y(y), z(z) {;} Vector3 operator + (const Vector3 o) const { return Vector3(x+o.x, y+o.y, z+o.z); } Vector3 operator - (const Vector3 o) const { return Vector3(x-o.x, y-o.y, z-o.z); } Vector3 operator * (const Vector3 o) const { return Vector3(x*o.x, y*o.y, z*o.z); } Vector3 operator * (const float v) const { return Vector3(x*v, y*v, z*v); } Vector3 operator / (const float v) const { return Vector3(x/v, y/v, z/v); } Vector3& operator += (const Vector3 o) { this->x += o.x; this->y += o.y; this->z += o.z; return *this; } Vector3& operator -= (const Vector3 o) { this->x -= o.x; this->y -= o.y; this->z -= o.z; return *this; } // Vector& operator = (const float val) { // this->x = val; // this->y = val; // this->z = val; // return *this; // } bool operator == (const Vector3 o) const { return (x==o.x) && (y==o.y) && (z==o.z); } float norm() const { return std::sqrt(x*x + y*y + z*z); } Vector3 normalized() const { const float n = norm(); return Vector3(x/n, y/n, z/n); } Vector3 cross(const Vector3 o) const { return Vector3( y*o.z - z*o.y, z*o.x - x*o.z, x*o.y - y*o.x ); } float dot(const Vector3 o) const { return (x*o.x) + (y*o.y) + (z*o.z); } }; inline Vector3 operator * (const Matrix3& mat, const Vector3& vec) { return Vector3( (mat[ 0]*vec.x + mat[ 1]*vec.y + mat[ 2]*vec.z), (mat[ 3]*vec.x + mat[ 4]*vec.y + mat[ 5]*vec.z), (mat[ 6]*vec.x + mat[ 7]*vec.y + mat[ 8]*vec.z) ); } //inline Matrix4 operator * (const Matrix4& m1, const Matrix4& m2) { // return Matrix4({ // m1[ 0]*m2[ 0] + m1[ 1]*m2[ 4] + m1[ 2]*m2[ 8] + m1[ 3]*m2[12], m1[ 0]*m2[ 1] + m1[ 1]*m2[ 5] + m1[ 2]*m2[ 9] + m1[ 3]*m2[13], m1[ 0]*m2[ 2] + m1[ 1]*m2[ 6] + m1[ 2]*m2[10] + m1[ 3]*m2[14], m1[ 0]*m2[ 3] + m1[ 1]*m2[ 7] + m1[ 2]*m2[11] + m1[ 3]*m2[15], // m1[ 4]*m2[ 0] + m1[ 5]*m2[ 4] + m1[ 6]*m2[ 8] + m1[ 7]*m2[12], m1[ 4]*m2[ 1] + m1[ 5]*m2[ 5] + m1[ 6]*m2[ 9] + m1[ 7]*m2[13], m1[ 4]*m2[ 2] + m1[ 5]*m2[ 6] + m1[ 6]*m2[10] + m1[ 7]*m2[14], m1[ 4]*m2[ 3] + m1[ 5]*m2[ 7] + m1[ 6]*m2[11] + m1[ 7]*m2[15], // m1[ 8]*m2[ 0] + m1[ 9]*m2[ 4] + m1[10]*m2[ 8] + m1[11]*m2[12], m1[ 8]*m2[ 1] + m1[ 9]*m2[ 5] + m1[10]*m2[ 9] + m1[11]*m2[13], m1[ 8]*m2[ 2] + m1[ 9]*m2[ 6] + m1[10]*m2[10] + m1[11]*m2[14], m1[ 8]*m2[ 3] + m1[ 9]*m2[ 7] + m1[10]*m2[11] + m1[11]*m2[15], // m1[12]*m2[ 0] + m1[13]*m2[ 4] + m1[14]*m2[ 8] + m1[15]*m2[12], m1[12]*m2[ 1] + m1[13]*m2[ 5] + m1[14]*m2[ 9] + m1[15]*m2[13], m1[12]*m2[ 2] + m1[13]*m2[ 6] + m1[14]*m2[10] + m1[15]*m2[14], m1[12]*m2[ 3] + m1[13]*m2[ 7] + m1[14]*m2[11] + m1[15]*m2[15] // }); //} #endif // INDOOR_MATH_MATRIX3_H