#ifdef WITH_TESTS #include "../../Tests.h" #include "../../../sensors/radio/model/WiFiModelLogDist.h" #include "../../../sensors/radio/WiFiGridEstimator.h" #include "../../../sensors/radio/WiFiMeasurements.h" #include "../../../sensors/radio/WiFiProbability.h" #include "../../../sensors/radio/WiFiProbabilityFree.h" #include "../../../sensors/radio/WiFiProbabilityGrid.h" #include "../../../grid/Grid.h" // ensure the class-name is unique! struct TestNode190231 : public GridNode, public GridPoint, public WiFiGridNode<10> { TestNode190231(const int x_cm, const int y_cm, const int z_cm) : GridPoint(x_cm, y_cm, z_cm) {;} }; /** test the RSSI storage. [we use only a single byte due to memory constraints, but allow 0.25 dB steps!] */ TEST(WiFiGridNodeAP, rssi) { for (float rssi = -40; rssi > -103; rssi -= 0.1f) { WiFiGridNodeAP ap(0, rssi); ASSERT_NEAR(rssi, ap.getRSSI(), 0.2f); // max 0.2 dB variation from what it should be } } /** test the signal-strength limit: [-40: -103] */ TEST(WiFiGridNodeAP, rssiLimits) { // limit 1 WiFiGridNodeAP ap1(0, -10); ASSERT_EQ(-40, ap1.getRSSI()); // limit 2 WiFiGridNodeAP ap2(0, -200); ASSERT_EQ(-103, ap2.getRSSI()); } TEST(WiFiGridNode, ctor) { // ensure nodes are correctly empty initialized WiFiGridNode<10> node; ASSERT_EQ(0, node.getNumVisibleAPs()); TestNode190231 node2(0,0,0); ASSERT_EQ(0, node2.getNumVisibleAPs()); } // gnuplot debug dumps TEST(WiFiGridModelLogDist, create) { int gs = 20; Grid grid(gs); for (int x = 0; x < 2000; x += gs) { for (int y = 0; y < 2000; y += gs) { grid.add(TestNode190231(x,y,0)); } } std::cout << "GridNodeSize: " << sizeof(TestNode190231) << std::endl; const MACAddress ap1 = MACAddress("00:00:00:00:00:01"); const MACAddress ap2 = MACAddress("00:00:00:00:00:02"); const MACAddress ap3 = MACAddress("00:00:00:00:00:03"); const MACAddress ap4 = MACAddress("00:00:00:00:00:04"); // LocatedAccessPoint ap1, Point3( 0, 0,0)); // LocatedAccessPoint ap2("00:00:00:00:00:02", Point3(20, 0,0)); // LocatedAccessPoint ap3("00:00:00:00:00:03", Point3( 0,20,0)); // LocatedAccessPoint ap4("00:00:00:00:00:04", Point3(20,20,0)); // std::vector aps = {ap1, ap2, ap3, ap4}; // model not populated -> must be empty ASSERT_EQ(0, grid[0].getNumVisibleAPs()); WiFiModelLogDist model; model.addAP(ap1, WiFiModelLogDist::APEntry( Point3(0,0,0), -40, 1.5)); model.addAP(ap2, WiFiModelLogDist::APEntry( Point3(20,0,0), -40, 1.5)); model.addAP(ap3, WiFiModelLogDist::APEntry( Point3(0,20,0), -40, 1.5)); model.addAP(ap4, WiFiModelLogDist::APEntry( Point3(20,20,0), -40, 1.5)); // std::vector aps = { // AccessPoint(ap1), AccessPoint(ap2), AccessPoint(ap3), AccessPoint(ap4) // }; WiFiGridEstimator::estimate(grid, model, 0); ASSERT_EQ(4, grid[0].getNumVisibleAPs()); // 4 APs visible at this node ASSERT_GT(0, grid[0].getRSSI("00:00:00:00:00:01")); // non-zero RSSI ASSERT_GT(0, grid[0].getRSSI("00:00:00:00:00:02")); // non-zero RSSI ASSERT_GT(0, grid[0].getRSSI("00:00:00:00:00:03")); // non-zero RSSI ASSERT_GT(0, grid[0].getRSSI("00:00:00:00:00:04")); // non-zero RSSI ASSERT_EQ(0, grid[0].getRSSI("00:00:00:00:00:05")); // unknown AP -> 0 RSSI WiFiGridEstimator::dump(grid, "00:00:00:00:00:01", "/tmp/ap1.gp"); WiFiGridEstimator::dump(grid, "00:00:00:00:00:02", "/tmp/ap2.gp"); WiFiGridEstimator::dump(grid, "00:00:00:00:00:03", "/tmp/ap3.gp"); WiFiGridEstimator::dump(grid, "00:00:00:00:00:04", "/tmp/ap4.gp"); Timestamp ts = Timestamp::fromMS(10); WiFiMeasurements obs; obs.entries.push_back(WiFiMeasurement(MACAddress("00:00:00:00:00:01"), -55, ts)); obs.entries.push_back(WiFiMeasurement(MACAddress("00:00:00:00:00:02"), -55, ts)); obs.entries.push_back(WiFiMeasurement(MACAddress("00:00:00:00:00:03"), -55, ts)); obs.entries.push_back(WiFiMeasurement(MACAddress("00:00:00:00:00:04"), -55, ts)); WiFiObserverGrid observer(5.0f); const TestNode190231& gn = grid.getNodeFor(GridPoint(1000,1000,0)); const float p = observer.getProbability(gn, ts, obs); observer.dump(grid, ts, obs, "/tmp/eval1.gp"); std::cout << "see: /tmp/eval1.gp" << std::endl; int i = 0; (void) i; } #endif