#ifndef WIFIRAYTRACE2D_H #define WIFIRAYTRACE2D_H #include "../../../geo/Point2.h" #include "../../../geo/Line2.h" #include "../../../geo/BBox2.h" #include "../../../geo/Ray2.h" #include "../../../floorplan/v2/Floorplan.h" #include "../../../floorplan/v2/FloorplanHelper.h" #include "../../../geo/volume/BVHDebug.h" #include "DataMap2.h" #include "MaterialOptions.h" #include // http://www.realtimerendering.com/resources/RTNews/html/rtnv10n1.html#art3 // http://math.stackexchange.com/questions/13261/how-to-get-a-reflection-vector // RADIO WAVES // http://people.seas.harvard.edu/%7Ejones/es151/prop_models/propagation.html Indoor Wireless RF Channel // http://www.electronics-radio.com/articles/antennas-propagation/propagation-overview/radio-em-wave-reflection.php struct Obstacle2D { Floorplan::Material mat; Line2 line; Obstacle2D(Floorplan::Material mat, Line2 line) : mat(mat), line(line) {;} }; struct Obstacle2DWrapper { static std::vector getVertices(const Obstacle2D& obs) { return {obs.line.p1, obs.line.p2}; } static std::vector getDebugLines(const Obstacle2D& obs) { return {obs.line.p1, obs.line.p2}; } }; struct Hit { const Obstacle2D* obstacle; float dist; Point2 pos; Point2 normal; Floorplan::Material material; bool stopHere = false; Hit() {;} Hit(const float dist, const Point2 pos, const Point2 normal) : dist(dist), pos(pos), normal(normal) {;} }; struct StateRay2 : public Ray2 { /** already travelled distance from the AP (by all previous rays */ float totalLength; /** attenuation taken since the start */ float totalAttenuation; const Obstacle2D* lastObstacle; int depth = 0; /** empty ctor */ StateRay2() : totalLength(NAN), totalAttenuation(NAN) {;} /** ctor */ StateRay2(const Point2 start, const Point2 dir) : Ray2(start, dir), totalLength(0), totalAttenuation(0) { ; } inline float getRSSI(const float addDist = 0) const { const float txp = -40; const float gamma = 1.2f; return (txp - 10*gamma*std::log10(totalLength + addDist)) - totalAttenuation; } }; class WiFiRaytrace2D { private: const Floorplan::Floor* floor; BBox2 bbox; Point2 apPos; BVH2Debug tree; DataMapSignal dm; struct Limit { static constexpr int RAYS = 2000; static constexpr int HITS = 25; static constexpr float RSSI = -110; }; public: /** ctor */ WiFiRaytrace2D(const Floorplan::Floor* floor, const int gs, const Point2 apPos) : floor(floor), apPos(apPos) { // get the floor's 3D-bbox BBox3 bb3 = FloorplanHelper::getBBox(floor); // 2D only party bbox = BBox2(bb3.getMin().xy(), bb3.getMax().xy()); // allocate dm.resize(bbox, gs); // build tree for (Floorplan::FloorObstacle* fo : floor->obstacles) { const Floorplan::FloorObstacleLine* line = dynamic_cast(fo); const Floorplan::FloorObstacleDoor* door = dynamic_cast(fo); if (line) { Obstacle2D obs(line->material, Line2(line->from, line->to)); tree.add(obs, true); } else if (door) { Obstacle2D obs(door->material, Line2(door->from, door->to)); tree.add(obs, true); } } // for (int i = 0; i < 200; ++i) { // tree.optimize(1); // tree.show(1500, false); // usleep(1000*100); // } // tree.show(); tree.optimize(250); // int depth = tree.getDepth(); tree.show(1500,false); constructNeighbors(dm); showNeighbors(dm); int i = 0; } public: void showNeighbors(DataMapSignal& map) { static K::Gnuplot gp; K::GnuplotPlot plot; K::GnuplotPlotElementLines lines; plot.add(&lines); auto func = [&] (const int ix, const int iy, const DataMapSignalEntry& e) { const Point2 p1 = map.gridToPos(ix, iy); for (const int idx : e.neighbors) { const Point2 p2 = map.idxToPos(idx); K::GnuplotPoint2 gp1(p1.x, p1.y); K::GnuplotPoint2 gp2(p2.x, p2.y); lines.addSegment(gp1, gp2); } }; map.forEachGrid(func); gp.draw(plot); gp.flush(); int i = 0; } /** construct neighborship relations between nodes not intersected by walls */ void constructNeighbors(DataMapSignal& map) { auto func = [&] (const int ix, const int iy, DataMapSignalEntry& e) { for (int dy = -1; dy <= +1; ++dy) { for (int dx = -1; dx <= +1; ++dx) { // x/y index for the potential neighbor const int ix2 = ix+dx; const int iy2 = iy+dy; // out of bounds? if (!map.containsGrid(ix2,iy2)) {continue;} // intersection test const Point2 p1 = map.gridToPos(ix, iy); const Point2 p2 = map.gridToPos(ix2, iy2); const Line2 line(p1,p2); const Point2 dir = (p2-p1).normalized(); const Ray2 ray(p1, dir); bool isConnectable = true; auto onHit = [&] (const Obstacle2D& obs) { if (obs.line.getSegmentIntersection(line)) {isConnectable = false;} }; tree.getHits(ray, onHit); if (isConnectable) { e.neighbors.push_back(map.getIndex(ix2, iy2)); } } } }; map.forEachGrid(func); } const DataMapSignal& estimate() { for (int i = 0; i < Limit::RAYS; ++i) { std::cout << "ray: " << i << std::endl; // angle between starting-rays const float angle = (float)M_PI*2.0f * i / Limit::RAYS; // direction const Point2 dir(std::cos(angle), std::sin(angle)); // ray const StateRay2 ray(apPos, dir); // run! trace(ray); } return dm; } private: static float dot(const Point2 p1, const Point2 p2) { return (p1.x * p2.x) + (p1.y * p2.y); } void trace(const StateRay2& ray) { // get the nearest intersection with the floorplan const Hit hit = getNearestHit(ray); // rasterize the ray's way onto the map rasterize(ray, hit); // continue? if (hit.stopHere) {return;} if (ray.getRSSI(hit.dist) < Limit::RSSI) {return;} if (ray.depth > Limit::HITS) {return;} // apply effects reflected(ray, hit); shadowed(ray, hit); } static inline float getAttenuation(const Hit& h) { return Materials::get().getAttributes(h.material).shadowing.attenuation; } static inline float getAttenuationForReflection(const Hit& h) { return Materials::get().getAttributes(h.material).reflection.attenuation; } /** perform reflection and continue tracing */ void shadowed(const StateRay2& ray, const Hit& hit) { StateRay2 next = ray; // continue into the same direction next.depth = ray.depth + 1; next.lastObstacle = hit.obstacle; next.start = hit.pos; next.totalLength += hit.dist; next.totalAttenuation += getAttenuation(hit); // contribute attenuation trace(next); } /** perform reflection and continue tracing */ void reflected(const StateRay2& ray, const Hit& hit) { Assert::isNear(1.0f, ray.dir.length(), 0.01f, "not normalized"); Assert::isNear(1.0f, hit.normal.length(), 0.01f, "not normalized"); // angle to wide or narrow? -> skip const float d = std::abs(dot(ray.dir, hit.normal)); if (d < 0.05) {return;} // parallel if (d > 0.95) {return;} // perpendicular; static std::minstd_rand gen; static std::normal_distribution dist(0, 0.02); const float mod = dist(gen); Point2 normalMod( hit.normal.x * std::cos(mod) - hit.normal.y * std::sin(mod), hit.normal.y * std::cos(mod) - hit.normal.x * std::sin(mod) ); // reflected ray; StateRay2 reflected; reflected.depth = ray.depth + 1; reflected.lastObstacle = hit.obstacle; reflected.start = hit.pos; reflected.totalLength = ray.totalLength + hit.dist; reflected.totalAttenuation = ray.totalAttenuation + getAttenuationForReflection(hit); // TODO reflected.dir = (ray.dir - normalMod * (dot(ray.dir, hit.normal)) * 2).normalized(); // slight variation trace(reflected); } static inline double crossVal(const Point2 v, const Point2 w) { return ((double)v.x*(double)w.y) - ((double)v.y*(double)w.x); } static inline void hitTest(const Ray2& ray, const Obstacle2D& obs, Hit& nearest) { const float minDist = 0.01; // prevent errors hitting the same obstacle twice // do not hit the last obstacle again //if (ray.lastObstacle == fo) {continue;} // get the line Point2 hit; if ( obs.line.intersects(ray, hit) ) { // TODO rounding issues?! const float dist = hit.getDistance(ray.start); if (dist > minDist && dist < nearest.dist) { nearest.obstacle = &obs; nearest.dist = dist; nearest.pos = hit; nearest.normal = (obs.line.p2 - obs.line.p1).perpendicular().normalized(); nearest.material = obs.mat; } } } Hit getNearestHit(const StateRay2& ray) const { Assert::isNear(1.0f, ray.dir.length(), 0.01f, "not normalized!"); const Line2 longRay(ray.start, ray.start + ray.dir*1000); //const float minDist = 0;//0.01; // prevent errors hitting the same obstacle twice const float MAX = 999999; Hit nearest; nearest.dist = MAX; //int hits = 0; const auto onHit = [ray, &nearest] (const Obstacle2D& obs) { //++hits; //hitTest(longRay, obs, nearest); hitTest(ray, obs, nearest); }; tree.getHits(ray, onHit); // no hit with floorplan: limit to bounding-box! if (nearest.dist == MAX) { //const BBox2 bb( Point2(0,0), Point2(w, h) ); Point2 hit; for (Line2 l : bbox.lines()) { if (l.getSegmentIntersection(longRay, hit)) { nearest.obstacle = nullptr; nearest.dist = hit.getDistance(ray.start); nearest.pos = hit; nearest.normal = (l.p2 - l.p1).perpendicular().normalized(); nearest.material = Floorplan::Material::UNKNOWN; nearest.stopHere = true; } } } return nearest; } /** rasterize the ray (current pos -> hit) onto the map */ void rasterize(const StateRay2& ray, const Hit& hit) { const Point2 dir = hit.pos - ray.start; const Point2 dirN = dir.normalized(); const Point2 step = dirN * (dm.getGridSize_cm()/100.0f) * 0.7f; // TODO * 1.0 ?? const int steps = dir.length() / step.length(); // sanity check // ensure the direction towards the nearest intersection is the same as the ray's direction // otherwise the intersection-test is invalid #ifdef WITH_ASSERTIONS if (dir.normalized().getDistance(ray.dir) > 0.1) { return; std::cout << "direction to the nearest hit is not the same direction as the ray has. incorrect intersection test?!" << std::endl; } #endif for (int i = 0; i <= steps; ++i) { const Point2 dst = ray.start + (step*i); const float partLen = ray.start.getDistance(dst); //const float len = ray.totalLength + partLen; // const float curRSSI = dm.get(dst.x, dst.y); const float newRSSI = ray.getRSSI(partLen); const float totalLen = ray.totalLength + partLen; // // ray stronger than current rssi? // if (curRSSI == 0 || curRSSI < newRSSI) { // dm.set(dst.x, dst.y, newRSSI); // } dm.update(dst.x, dst.y, newRSSI, totalLen); } } }; #endif // WIFIRAYTRACE2D_H